PROPOSED REVISION OF NRCS CURVE NUMBERS

CWEA Storm water Committee

MITAGS

Linthicum Heights MD

Dec 2017

Donald Woodward

Co-Chair ASCE-NRCS Task Group

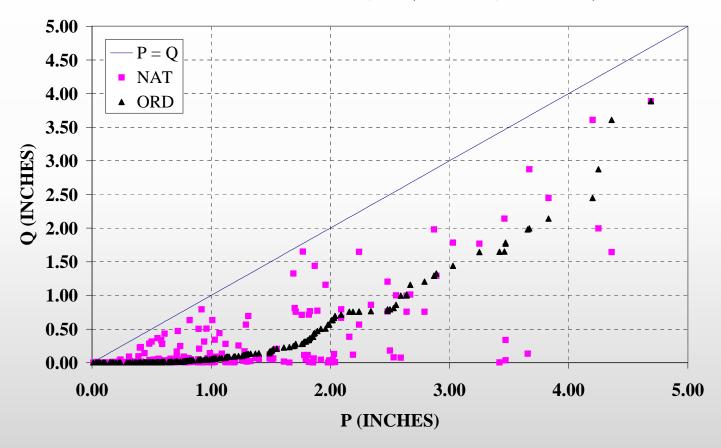
- In 1989 ARS/SCS group was established to
 - Determined if there was data available to reestablish the original documentation.
 - If there was data available to establish curve numbers to develop curve numbers for
 - the cultivation new practices.
 - Regional values
 - Monthly values

- In 2004 the work group report indicated
 - The Ia/S should be less than 0.2
 - The asymptotic method should be used to determine CN
 - There is limited data to support regional curve numbers
 - There is some data to support monthly curve numbers

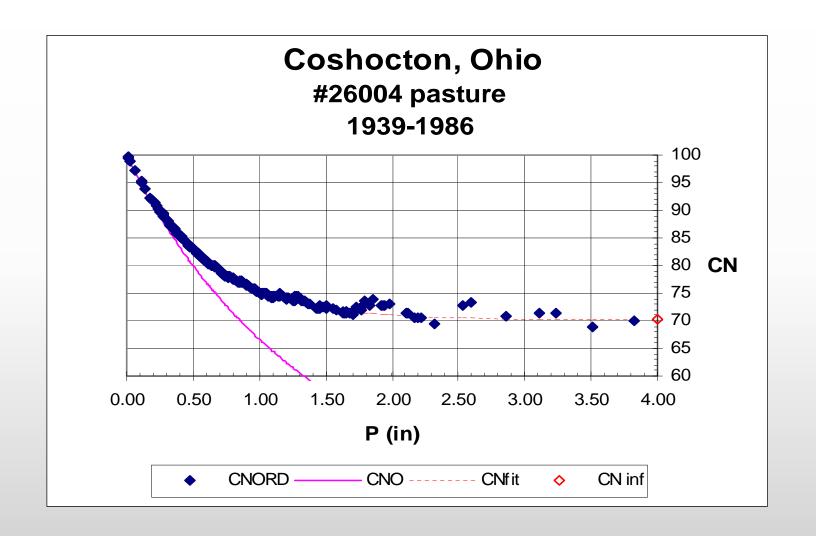
- Natural Resource Conservation Service (NRCS) signed a Cooperative Agreement with the American Society of Civil Engineering (ASCE) in Sept 2105.
- An ASCE Task Group was formed.
- With the expressed purpose of developing proposed revisions to Chapters 8, 9, 10 and 12 of NRCS National Engineering Handbook Part 630, Hydrology. (NEH 630)
- The effort involved engineers, researchers, and scientists from across the United States all outside NRCS.

- The CN Task Group provided NCRS via ASCE drafts of each chapter by the end of September.
- It is my understanding the copies of the chapters furnished NRCS are available on the ASCE Collaborate internet site.

- la =0.05\$ from la =0.20\$
- This is based on the analysis of data from over 300 small watersheds in the United States and research from other countries

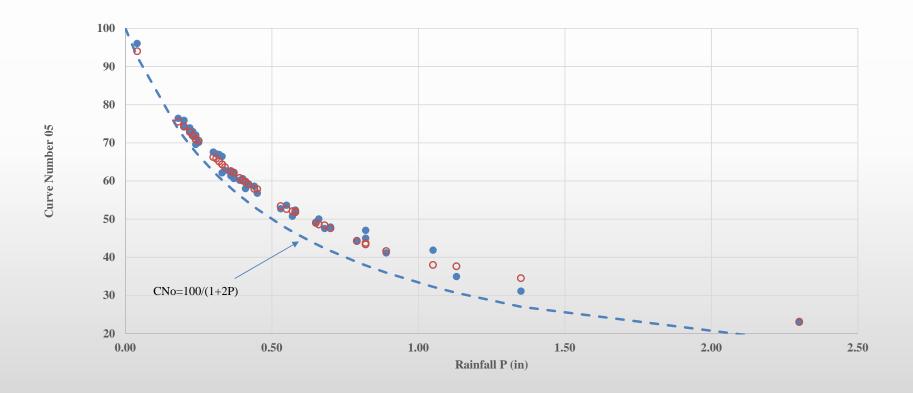

- A system or equation was developed to convert the CN_{20} to CN_{05} values.
- The conversion equation is $CN_{05} = CN_{20}/(1.42-0.0042CN_{20})$
- The original CNs can not be used with the new runoff equation
- Q = $(P-0.0S_{05})^2/(P+0.95S_{05})$ for $P>0.05S_{05}$, Q = 0 otherwise

- The method to determine Curve Number (CN) from rainfall runoff data was modified in two ways. The first way was how to select the data to plot
 - Use of ordered or frequency based data rather than natural data.
 - Ordered data is matching the largest runoff with the largest rainfall
 - Natural data is matching runoff with the causing rainfall
 - This is the way the initial curve numbers were determine

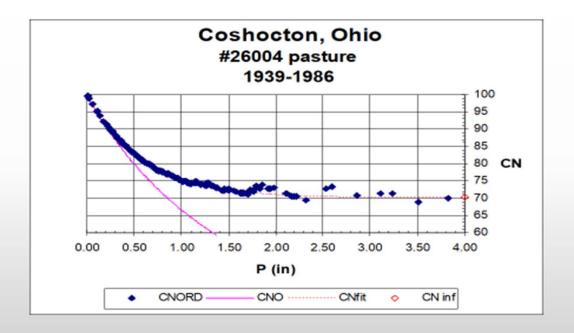

• The second change is how to obtain the CN for a particular soil-cover complex

- The current method is to plot P versus Q
 - The annual events using natural were used.
 - The median value was selected.

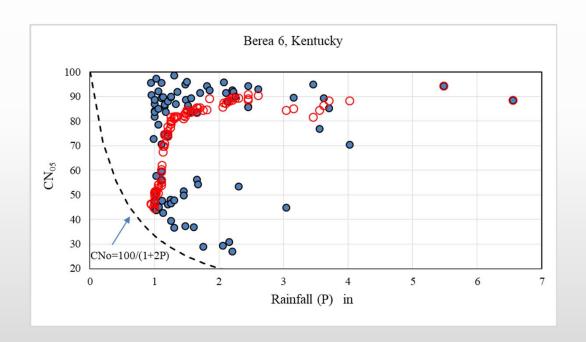
226 Ordered and Natural rainfall-runoff events for a 11.3 acre ARS watershed located at Riesel, TX (WS42040, 1969-1981)


- The proposed method is to plot CN versus P for all events
- Either ordered or natural events can be used.
- An analysis indicated that there was not a significant difference between order or natural data in the computed CN.
- The Technical Group (TG) recommends using ordered data.
- This procedure is known as the asymptotic approach

- An equation has been developed to define the curve shown in the prior slide
- The equation has the form
- $CN(P) = CN_{\infty} + (100 CN_{\infty})exp(-kP)$
- Which is normally fitted by trial and error
- The new chapter 9 provides detail procedures for determining k
- This procedure tends to make the selection of the representative CN very easy.


- Analysis of many watersheds has lead to the conclusion that there are basically three types of watershed based on their responses.
- Complacent

Complacent


In a complacent watershed the major source of runoff is the channe flow or it has very depth porous soils
There is no apparent asymptotic value

Standard

•	These are the normal Midwest agricultural watersheds that were
	investigation in the beginning.
•	These watersheds occur in many places in the world.

Violent

- These watershed have an initial response like classic watershed or even a complacent watershed and then major runoff occurs.
- These would be shallow soils with impervious sublayer
- Such as
 - Green roofs
 - Porous pavement
 - Steep forested watershed with a shallow soil profile

- The chapters will add information on
 - Forested watersheds
 - Curve Numbers do not work in some cases
 - National Land Classes Data (NLCD)
 - Curve Numbers have been added for a nation wide classification system
 - How to determine Curve Numbers for all three types
 - Selected Urban Curve Numbers have been added

- It has been recommended that the chapters be reordered
 - Chapter 10 curve number science
 - Chapter 9 actual curve numbers
 - Chapter 8 land use and class information
 - Chapter 12 Influences of and treatment

- It is my understanding the NRCS will complete the field review of the proposed chapters by Feb 2018
- The next step will to decide if the chapters should be used with NRCS comments or rejected.
- If accepted it will require revision of the standard NRCS computer programs Win TR-20, WinTR-55, EFM2, SITES.
- Other computer programs using the new CN procedure will also need to be reprogramed to use the new equations and CN values.