# BioAugmentation in Force Mains, Gravity Sewers and Pumping Stations



### **Presentation Outline**

- Who, What, When, How of BioAugmentation
- Collection Systems Basic Chemistry/Biology
- Industry Studies, Videos and Tests
- DC Water Main Pumping Station Project
- WERF CAPS Study
- Path Forward

## How does it happen?



## What is **BioAugmentation**

The addition of:

- Micro organisms
- Oxygen, Hydroxyl Radials (Ozone)
- Surfactants

In to the flowing sewage to eliminate bio-slime on sewer walls, FOG above the water in particular and the formation of toxic gases

# How They Work - Microbes

- Micro Organisms Eat Organic Matter
- Tiny Trillion Can siton the Head of a Pin
- Are Cultured by Manufacturer to Destroy Typical Organic Matter
- Safe to Humans, Effective Against FOG and BioSlime



### How They Work – Microbes Cont'd

### Aerobic Organisms

- Require Oxygen
- Bi-products are
  - Water
  - Carbon Dioxide
  - Ammonia

### Anaerobic Organisms

- Environment Free of Oxygen
- Bi-Products
  - Hydrogen Sulfide
  - Methane
  - Water
  - Carbon Dioxide

## How They Work – Oxygen, Hydroxyl Radicals Addition

Increasing Dissolved Oxygen Provides Life Sustaining Oxygen to normally Oxygen Depleted Sewage.

- Aerobic Organisms Multiply
- Convert Organic Matter to Water, Carbon Dioxide

Adding Ozone Oxidizes Organic Matter

### How They Work – Oxygen cont'd

### ECO<sub>2</sub> Technology

#### Nano Air Bubbles Aeration System (NABAS)





Before starting BGS systems

After starting BGS systems (Nano Bubble Aeration Image)

### How They Work – Hydroxyl Radical

### **Parkson-OHxy Phogg**

#### NABAS Bubble System





STX Catalytic – Source Technologies delivers Hydroxyl Radicals Not Shown

### How They Work – Hydroxyl Radical

- Free Radicals oxidize organic matter by removing electrons from the compound to achieve stoichiometric balance, therefore, reduction/oxidation is the result
- This method can be mixed directly into the water or introduced as a 'fog' on top of the water.

# How They Work - Surfactants

- Surfactants make water wetter and break up dirt, grease, grime, etc.
- Generally are chemically based such as soaps, dishwashing liquids, etc.
- In early 70's generally banned from use in sewers when the contained phosphorous.

# How They Work – Surfactants -

Accell

### **Gulf Oil Spill Demo**

#### Sao Paulo Brazil – RiverTest



# How Is Chemical Addition

# **Different From BioAugmentation**

- Chemicals maybe toxic Ozone is only Biological product that can be hazardous if inhaled
- Chemicals are noteasily portable
- Require Frequent Tanker Truck Deliveries
- Difficult to Locate in Cities



## **Key Collection Systems Terms**

- pH if pH is above 8.5 H<sub>2</sub>S will not begenerated
- Interfacial Tension (IFT) measures the spreading effect between water and anything floating on the top
- O.R.P. Oxidation Reduction Potential measures the effectiveness of water to oxidize or "clean" itself or in case of treated wastewater assist in cleaning the body of water it has entered.

# Leading Industry Studies

- WERF Nov 8, 2007 Minimization of Odors and Corrosion in Collection System, Phase 1
- Studied science of Bio Slime
- Reviewed 4000 papers on subject
- Defined ORP (oxidation reduction potential) as key element to overcoming hydrogen sulfide



### Leading Industry Studies – cont'd

- American Water Co WEFTEC 2010 Sioux Falls Study
- Introduced Microbes in Collection System
- Reduced BioSolids by 15%
- Increased BOD
- Speculated BOD Easier to Treat

# DC Water 2011 Summer Accell3

## **Research Project**

- Thanks to Howard University's Charles Glass, PhD and his students
- Add Accell3 at a different rates at Main Pumping Station – 0.1, 0.2 and 1.9 ppm
- Track Performance at 6 Sites on the East Outfall Sewer
- Take Samples
- Measure ORP, DO, pH, TSS, VSS,  $H_2S$ , COD,  $NH_3$ , PO  $-\frac{3}{4}$

### Location of Sites



Average Hydrogen Sulfide Concentration at Six Sites



### **Data Analysis**

 Reduction in TSS and VSS during the summer may have been due to the uncoupling of microorganism reproduction from energy use.



### **ORP Results: All Locations**

- H<sub>2</sub>S gas is produced at
  -50 to -250 mV.
- ORP values reached
  -300mV during 100+
  weather



### WERF Manuscript: DC Water's

## **Sewer-Methane Carbon Footprint**

- John Willis1, 2\*, Haydee DeClippeleir3, Walter Graf4, Akshay Kumar5, Barry Lucas3, Sudhir Murthy3, Chris Peot3, Pusker Regmi1, Abhiram Satyadev6, Charles Sweeney3, Keshab Sharma2, Hiram Tanner3, and Zhiguo Yuan2
- 2 The University of Queensland
- 3 DC Water
- 4 Water Environment Research Foundation (WERF)
- 5 RK&K Engineers
- 6 Arcadis
- \* JWillis@BrwnCald.com

### DC Water's Potomac Interceptor



**Results – Summer Baseline** 







- Atmospheric CO<sub>2</sub> should be ~400ppmv
- Observed headspace CO<sub>2</sub> values averaged
  5,200ppmv; for an increase of 4,800ppmv
- Would expect  $\sim 1$ -to-1 CO<sub>2</sub> to CH<sub>4</sub> ratio
- Suggests >20 times aerobic than anaerobic
- CO<sub>2</sub> is more soluble in water than CH<sub>4</sub>

# Chemical Addition of FeSO<sub>4</sub> Did Not Effectively Control H<sub>2</sub>S



## Path Forward

- Addition of Microbes to remediate FOG blockages
- BioAugmentation best used for Routine Maintenance of Mains & Pumping Stations to avoid FOG, Corrosion and Hydrogen Sulfide and to Protect Workers
- To Track Benefits/Need for BioAugmentation Test for O.R.P.
- Perform Additional Research to Enhance Collection Systems Natural Aerobic Activity.