

consultants

Stormwater: Too Simple?

Getting Closer to Advertised Level of Service

Brandon Klenzendorf, Ph.D., P.E.

13 December 2017 - CWEA Fall Seminar

Introduction

- Traditional approaches to solving stormwater problems are:
 - Increasingly cost prohibitive
 - Difficult to integrate all the missions (floodplain, storm drains, water quality, channel stability)
 - Often lacking precision in fixing the most urgent problems
- How can we address these issues?
 - Improve watershed characterization
 - Improve simulation of physical processes
 - Use of historic long-term precipitation data to drive models
 - Take a holistic approach to watershed management

Uncertainties in Watershed Attributes

- Precipitation
 - Patterns, spatial variability, seasonal variability, future trends
- Evaporation
 - Cloud cover, wind speed, wet day versus dry day
- Land use
 - Pollutant loading from different surfaces
- Impervious cover
 - Characterization, pollutant loading
- Elevations
 - Accurate topographic data, field survey, LiDAR
- Drainage flow paths
 - Small scale flow paths, changes in flow paths at higher flows, uncertainty in drainage areas
- Soil characteristics
 - Infiltration parameters, soil variability
- Vegetation
 - Coverage, plant types, leaf area index, evapotranspiration

Uncertainties in Watershed Attributes

- With all these uncertainties, how can we best represent a watershed?
 - Calibration: make the model fit the data, but is the fit accurate?
 - Can create additional uncertainties:
 - Rainfall sensor clogged
 - Rating curves for flow rates (roughness values, discharge coefficients)
 - Bypass and/or changing drainage areas based on flow rates and wind speeds
- Alternatively, use available data to better characterize the watershed
 - Pollutant characterization by land use and BMP performance
 - Historical rainfall records
 - Adaptive management and resiliency

Land Use EMCs

- Event Mean Concentration (EMC) analysis can be used to represent pollutant loadings as well as treatment efficiency for stormwater control measures
- Metals analysis for four land use types
 - Local monitoring data for Phase 1 MS4 permit

Land Use EMCs

- Apply land use EMCs together with hydrology to identify areas of high pollutant loading
 - Assist with TMDL analysis
 - Identify priority areas and optimize treatment measures

- With estimated pollutant loads, what stormwater treatment measures are most efficient at removal?
- International BMP Database provides data for range of BMP types, pollutants, climates, soils, etc.

Better Prediction of Level of Service

Design Storm or Continuous Simulation

Rainfall Analysis

- Real rainfall events don't follow design storms
 - Modern-era Austin's flood of record (prior to 2013)

Comparison

Design Storm (DS)

Advantages:

- Simplicity
- Inherently conservative
- Familiarity

Concerns:

- Addresses extreme hydrologic events
- Rainfall frequency may not always coincide with the runoff frequency
- Therefore, designs may not be cost-effective and are irrational in terms of their overall performance

Continuous Simulation (CS)

Advantages:

- Long-term performance (BMPs) under more frequent events
- Includes seasonal variability
- Realistic estimates for extreme event performance
- Performance-based designs may result in cost savings

Concerns:

- Lack of good data
- Complexity
- Perception of higher costs

Continuous Simulation Project Example

Project Objectives

Flooding concerns

- Reduce localized flooding with green infrastructure controls
- Overland flooding issues resulted in 1D/2D modeling
- Frequent localized flooding resulted in performance during smaller events to be the focus

Reduce erosion potential

- Long-term erosion/scour occurs primarily at bankfull conditions (~2-year event)
- Water quality benefits
- Water conservation implications
- Whole life-cycle cost reduction
 - \$200M for traditional SW infrastructure improvements to meet the City's design storm (100-year)
 - \$22M (construction) + \$35M (50-year life O&M) for green infrastructure + limited grey achieved significant improvements (~25-year)

Rainfall Comparison

- 100-year design storm
 - Depth = 10.2 inches
 - Peak intensity = 8.9 in/hr
 - Duration = 24 hours
- Historic rainfall event, ~50-year return period based on rainfall
 - Depth = 10.6 inches
 - Peak intensity = 3.1 in/hr
 - Duration = 100 hours (4 days)

DS vs CS Comparison Results

- CS suggests higher peak flows for more frequent events (<5-year return period) and lower peaks for less frequent events
- Less confidence for larger return periods (for both CS and DS)

Return Period	DS Peak Flow (cfs)			
(yr)	Existing	Max GI	Hybrid	
1	N/A	N/A	N/A	
2	179	107	64	
5	280	223	147	
10	351	296	229	
25	405	358	283	

Return Period	CS Peak Flow (cfs)		
(yr)	Existing	Max GI	Hybrid
1	199	105	63
2	235	165	96
5	304	225	152
10	340	291	227
25	395	317	246

Continuous Simulation

Design Storms

GEOSYNTEC CONSULTANTS

More Accurate Performance Predictions

- Erosion potential: most erosion occurs at more frequent events
 - Higher effective work = higher erosion potential

GEOSYNTEC CONSULTANTS

Future Uncertainty

Design for Resiliency and Adaptive Management

Addressing Future Uncertainty

- How to further account for future uncertainties
 - Design in resiliency features

Continuous Monitoring and Adaptive Control

GEOSYNTEC CONSULTANTS

Summary

- Uncertainty in watershed attributes likely far outweighs uncertainty in future rainfall predictions
- We can address these uncertainties by improving:
 - Watershed characterization
 - Land use EMCs, accurate topographic data, etc.
 - Site-specific data collection
 - Simulation of physical processes
 - Design storm versus continuous simulation
 - Continuous simulation for better assessment of BMP effectiveness
 - Holistic approach to watershed management
 - Multiple project objectives/goals

Questions or Discussion?

Thank you!

bklenzendorf@geosyntec.com

Office: (512) 354-3281

Precipitation Observations

- Future scenarios focus on changing precipitation patterns (intensity, depths, seasonality)
- Observed rainfall trends are changing although percent change varies by location and often within scatter of available data

