Managing the Delicate Balance between Wastewater Discharges and Groundwater Aquifers Case Studies from New England

Marc Drainville | GHD November 2016

Agenda

Background

- Typical Drivers (Why discharge to the ground)
- Permit limits

Methods of Land Disposal Technologies used to remove CECs New England Case Studies

- Rindge, NH
- Foxwoods Casino, CT
- Chatham, MA
- Oak Bluffs, MA

Questions

Background

Typical Drivers (Why discharge to the ground?)

- Limited or no viable surface water discharges
- Unable to discharge to the ocean
- NPDES permitting
- Regulatory requirement to evaluate
- Desire for reuse and reclamation

Concerns: groundwater aquifers, receiving water bodies

Permit Limits

- TSS/Turbidity
- Nitrogen ۲
- Contaminants of Emerging Concern (Total Organic Carbon, etc)
- Disinfection

Leonardo Disposal Area

Effluent Characteristic

Discharge Limitations

Flow 250,000 gallons per day maxim	num to Leonardo	Property*
Total Daily Flow** not to exceed	370,000 gallor	ns per day
Oils & Grease	15	mg/l
Total Suspended Solids	1.0	mg/1
Biochemical Oxygen Demand, 5-day @20c	30	mg/l
Total Nitrogen (NO ₂ + NO ₃ + TKN)	10 mg/l	daily max
Nitrate Nitrogen	10	mg/1
Fecal Coliform Bacteria	200/10	
Turbidity	5	NTU
Total Organic Carbon (TOC)	3	mg/l

1 / - 1

Nitrogen

- Primary drinking water standard – Nitrate 10 mg/L (TN of 10 mg/L)
- Lower limits if required by receiving water – TN as low as 3 mg/L

Contaminants of emerging concern

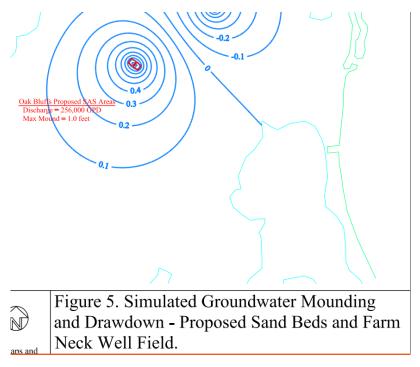
- 31 million organic and inorganic substances documer
- 14 million commercially available
- < 250,000 inventoried or regulated
- Domestic, Industrial & Agricultural compounds:
 - Pharmaceuticals: Prescription & Non Prescription
 - Personal Care Products
 - Industrial & Commercial Products (Detergents & metabolites, Plasticizers, Flame retardants, Pesticides)
- Potential Health Effects
 - EDCs
 - Carcinogens
 - Developmental Toxicants

William Duke

Contaminants of Emerging Concern (CECs) and Total Organic Carbon (TOC)

- Requirements released by State of Massachusetts in March, 2009 include limitations for TOC
 - 3.0 mg/L for discharge within a Zone II drinking water protection area and >2-year travel time to source
 - 1.0 mg/L for discharge within a Zone II area and <2-year travel time to source
 - 1.0 mg/L for discharge within a Zone II area without soil aquifer treatment
- TOC limit is a daily limit (24 hour composite sample)
- TOC is a surrogate for many CEC
- Studies have shown that Pharmaceuticals & Personal Care Products (PPCPs) adsorb on to particulates of organic carbon, hence removal of TOC provides for removal of PPCPs.

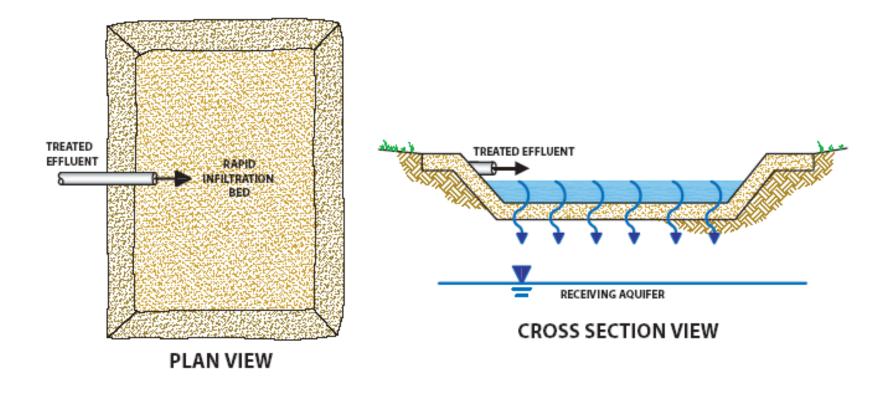
Methods of Land Disposal


Land Disposal: The Challenges

- Sufficient land available?
- Suitable soil and groundwater conditions?
- Sensitive ecologic receptors?
- Compatible land use?
- Distance from plant?
- Reclamation reuse component?
- Drinking water aquifer?

Investigate the land

- Find land
- Review soils desktop
- Investigate soils (borings, test pits)
 - Depth to groundwater
 - Characterization of soils
- Hydrogeologic Study (mounding)
- Percolation Tests
- Hydraulic load tests



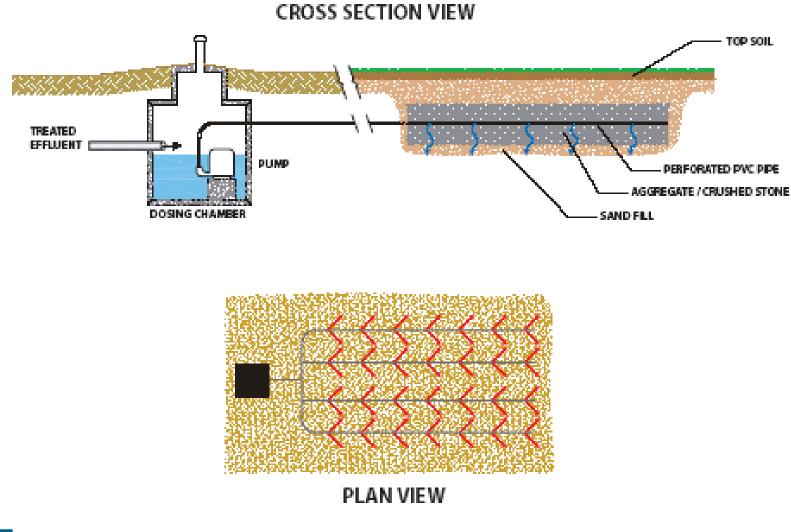
Technology Review: Introduction

- Rapid Infiltration Beds (RIBs)
- Subsurface infiltration (including drip irrigation)
- Spray irrigation
- Injection wells
- Wick systems
- Wetland restoration
- Reuse reclamation

Technology Review: RIBs

GHD

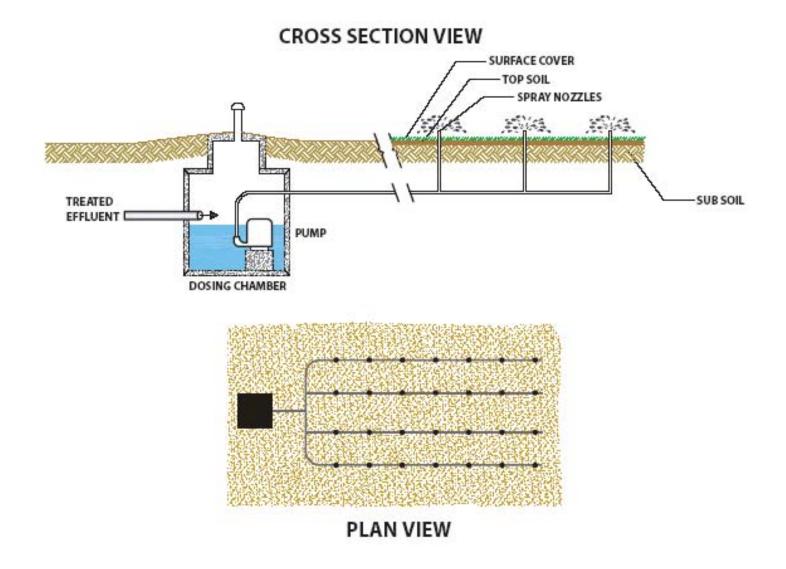
Technology Review: RIBs


Technology Review: RIBs

- Probably the simplest
- Easy maintenance (raking)
- Typically multiple beds and rotate use of beds
- Typically higher loading rates than other methods (up to 5 gpd/sq ft or more)
- Low public acceptance if visible
- Land intensive

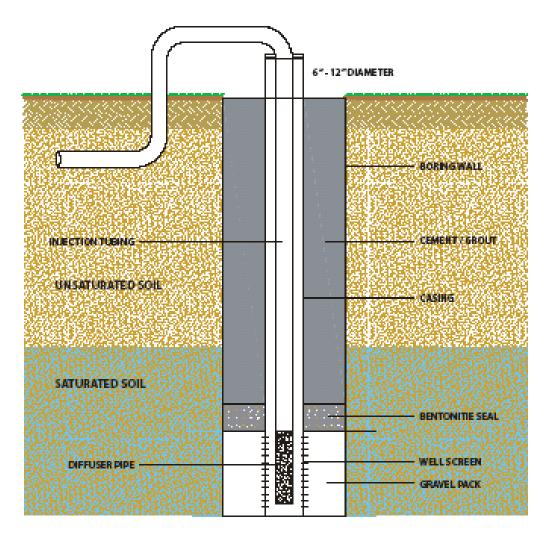
RIB – Why is maintenance needed?

- Allow secondary land use (parking, playing fields, parks)
- Higher public acceptance
- Larger area requirements than sand beds due to lower application rate
- 3 gpd/sq ft (trench) = 18 gpd/LF = 1.8 gpd/sq ft (field)
- Typically multiple beds and rotate use of beds
- Difficult to service if plugging occurs


- Variation of subsurface infiltration: drip irrigation
- Can be used in rolling terrain conditions.
- Is associated with water reuse because water is recharged into the root zone of plants or crops.
- Low delivery rate to minimize water table impacts.
- Effluent must be highly treated to minimize plugging.
- Difficult to monitor emitter performance.
- Facilities must be protected from damage from heavy vehicles.

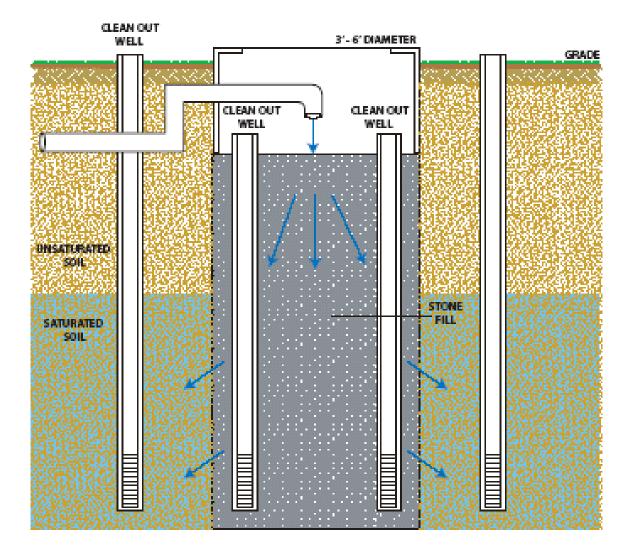
Technology Review: Spray Irrigation

Technology Review: Spray Irrigation


- Beneficial reuse of water in the form of irrigation
- Volume attenuation (through evapotranspiration) and Nitrogen attenuation (through plant uptake)
- Allows secondary use of land
- Reduces demand on water system
- Requires storage or alternative method
- Land intensive (2 in/wk = .17 gpd/sq ft)

Spray Irrigation

Technology Review: Injection Wells



Technology Review: Injection Wells

- Long history of use in CA and FL
- Low land area requirements
- Aesthetic impacts (sight-odor) are minimal
- Operation and maintenance can be challenging
- Regulatory hurdles, especially with regard to higher levels of chlorination, needed to mitigate biological fouling

Technology Review: Wick Systems

Technology Review: Wick Systems

- Low land area requirements (some states require 100% reserve area)
- Aesthetic impacts (sight-odor) are minimal
- Very limited long term operation and maintenance experience
- Plugging possible with high solids
- Typically multiple wells and rotate use of wells

Technology Review: Wetland Restoration

- Hybrid system
- Comparable to created wetlands for stormwater treatment
- In conjunction with conventional land recharge
- Regulatory hurdles to direct discharge
- Benefits ecosystem by restoring hydrologic balance (in areas of high groundwater withdrawal)
- Significant nitrogen attenuation

Technology Review: Reuse and Reclamation

- Follow state reuse policy (treatment)
- Recharge in zone of contribution of water supplies
- Recharge and associated withdrawal for irrigation
- Spray irrigation
- Purple pipe systems (toilets, irrigation, cooling water, etc.)

Technology Review: Conclusions

Multiple technologies, variables include:

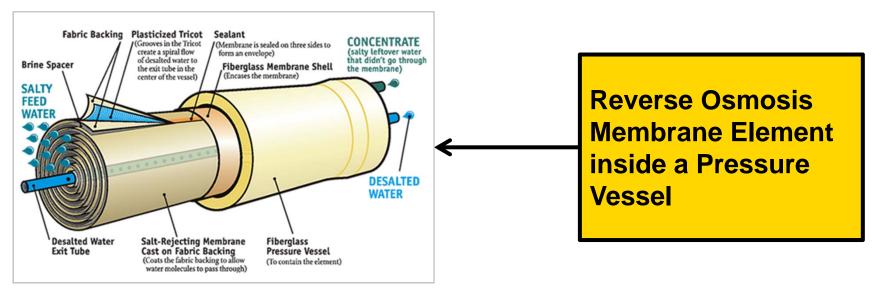
- Public acceptance
- Area
- Regulatory comfort
- Treatment and maintenance
- Reuse benefits

Pick which one best suits your needs

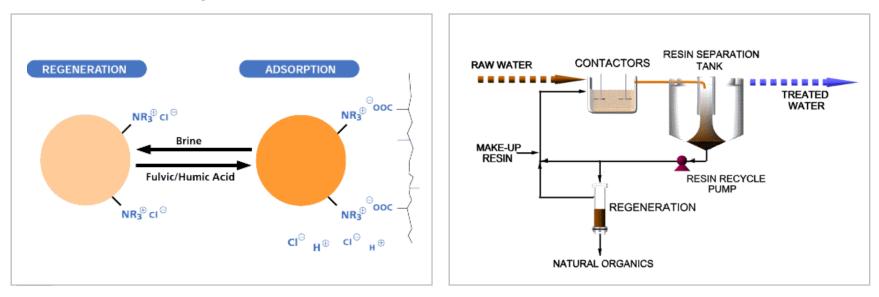
Technologies used to remove CECs

Technologies to achieve less than 3.0 mg/I TOC (post-tertiary) – alone or in conjunction with others

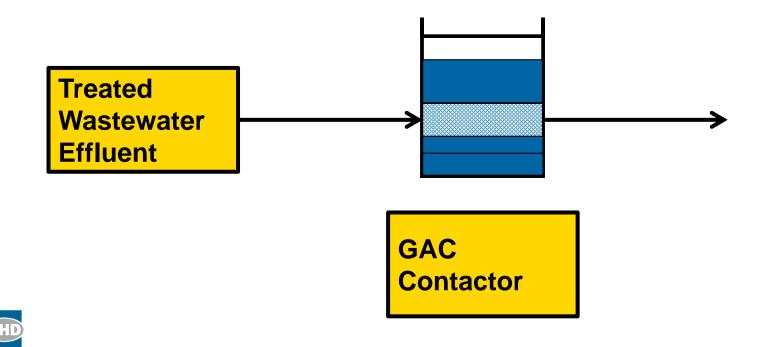
- Membrane Filtration
 - Nanofiltration, Reverse Osmosis, Ultrafiltration
- Ion Exchange
- Adsorption Granular Activated Carbon (GAC)
- Advanced Oxidation Processes (AOPs)
- Coagulation and Filtration



	П	-
9	11	2


Membranes

- Requires pretreatment to minimize fouling
- May require post-treatment for water chemistry stabilization
- Concentrate disposal required (high salinity RO concentrate)
- Excellent TOC and CEC removal

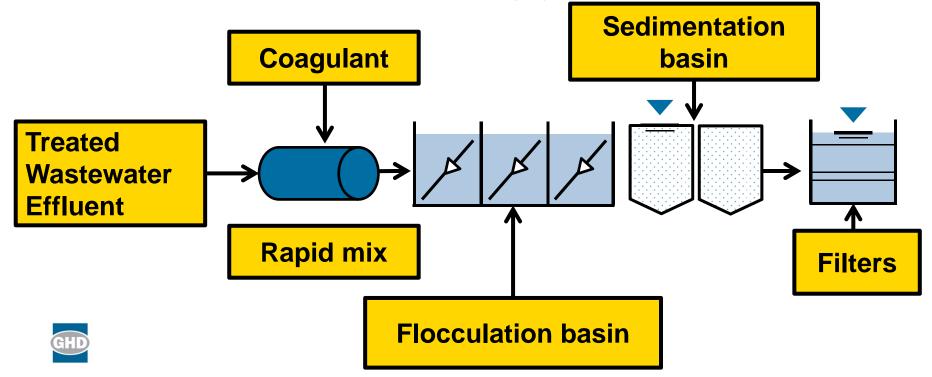

Ion exchange

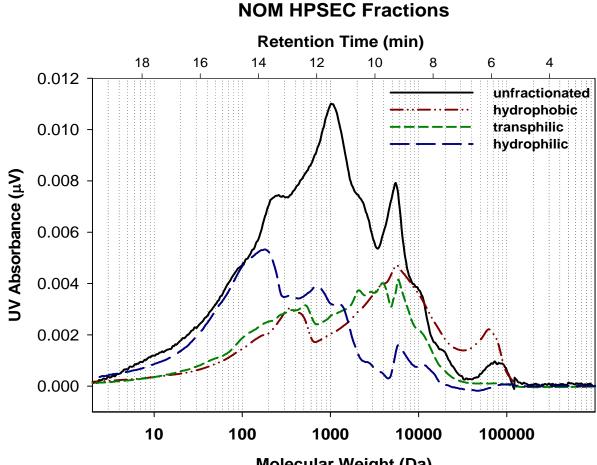
- Continuous process with magnetized anionic exchange resin designed for Dissolved Organic Carbon (DOC) removal
- DOC exchanged with chloride ions on the MIEX resin surface, resin has to be regenerated
- Brine disposal required
- Potential for good DOC and CEC removal


Adsorption GAC

- TOC adsorbed in a downflow or upflow contactor
- Requires pre-treatment and disposal / regeneration of spent GAC once breakthrough occurs
- Good TOC and CEC removal

Advanced Oxidation

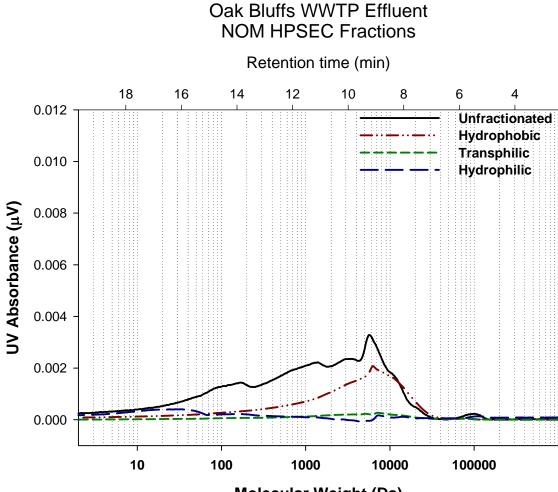

- Oxidation by hydroxyl radicals
- Typically used as polishing step following membrane filtration
- Good CEC destruction



Pre-Treatment

- Alter physical / chemical properties of suspended particles to increase agglomeration (create larger flocs)
- Chemical coagulants include aluminum sulfate (alum), ferric chloride, and ferric or ferrous sulfate, Ferrate (VI)

Influent organic matter characterization



Oak Bluffs WWTP Influent

Molecular Weight (Da)

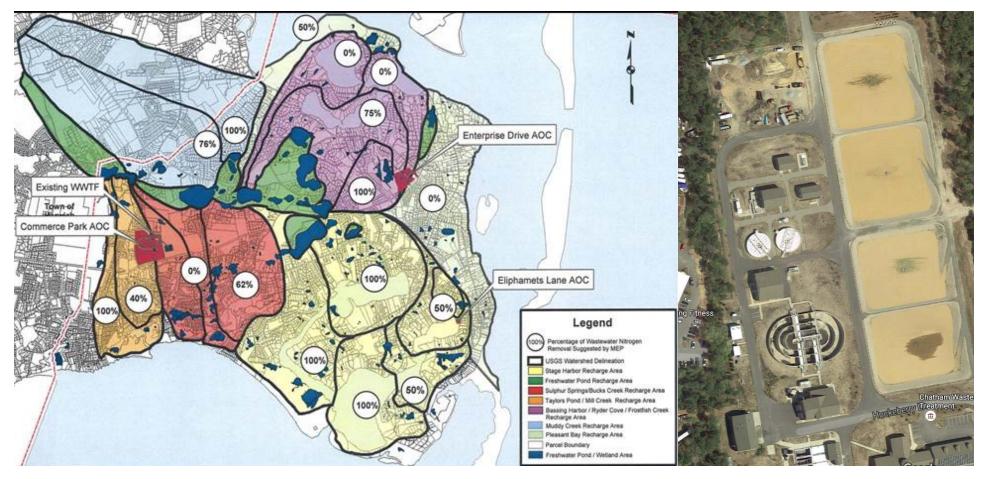
Influent organic matter characterization

Molecular Weight (Da)

New England Case Studies

Franklin Pierce University; Rindge, NH

- Former wetland discharge (surface water)
- Transitioned to groundwater discharge encouraged by EPA
- Infiltration beds
- Several drinking water wells downstream of discharge (rural area)
- Nitrate and TN of 10 mg/L


Foxwoods Casino, CT

- Native American Casino (no permit for normal discharge)
- Infiltration Beds (normal discharge)
- Voluntarily remove nutrients
- Golf Course (permitted water reuse application) including disinfection

Chatham, MA

- Discharge to groundwater (abandoned drinking water supply)
- Special action from state
- TN of 3 mg/L

Oak Bluffs, MA

- Discharge to groundwater (drinking water supply)
- Original permit required TOC limit of 3 mg/L
- Negotiations with State required to allow discharge without treatment beyond filtration (only nitrate and TN of 10 mg/L)

Summary cost comparison for TOC removal

Town	Treatment Costs (project costs in \$/gpd)	Other options	Final Decision
Chatham, MA	\$10 *	Replace well, treat at well, waiver	Abandoned well in drinking water supply area and sought waiver
Falmouth, MA	\$9 *	Alternative site	Sought alternative disposal site
Oak Bluffs, MA	\$16**	State negotiations	Permit was negotiated to eliminate TOC req't

* Incremental increase above ENR

** No backup facilities due to the presence of a backup disposal area

Thank you

Marc R Drainville, PE, BCEE, LEED AP

QUESTIONS

ANSWERS

<u>marc.drainville@ghd.com</u>

+1 774 470 1630

www.ghd.com