Managing Stormwater Runoff Where are we now and where are we going?

D. Lee Currey

Maryland Department of the Environment

Chesapeake Water Environment Association
Lessons Learned in Restoration & Program
Implementation
2017 Spring Seminar

History of the Clean Water Act

- Rivers and Harbors Act (1899)
- Water Pollution Control Act (1948)
- Federal Water pollution Control Act (1956)
- Water Quality Act (1965)
- Federal Water Pollution Control Act Amendments (1972)
 - Clean Water Act (1977)
 - Water Quality Act (1987) –Stormwater Permitting –Chesapeake

Time Magazine (1969)

Topics

- Stormwater Runoff in Maryland
- Lessons Learned Lead to Better Solutions
- Looking Forward

Maryland Nitrogen Loads from 1985 - 2009

A Brief History of Stormwater

Maryland Stormwater Loads with SW Laws and with Reduction from NPDES MS4 Permit

State Fiscal Year

Source: MDE 2013, Phase II WIP

Urban stormwater runoff from older areas is perhaps one of our most significant challenges

MS4 Permits Cover the Majority of MD's Urban Runoff

NPDES Permitted Jurisdictions

MS4 Permit Approach To Achieving Clean Water Goals

- Source identification
- Specific management programs
 - SWM, E&SC, Trash and litter, education, Illicit Discharge
- Restoration plans and TMDLs
 - Baselines, prioritization and progress
- Assessment of controls
- Funding
- Chesapeake Bay Nutrient and sediment goals

Lessons Learned Lead to Better Solutions

- Public education is essential
- Clear restoration goals
- A focus on funding, financing and efficiencies
- Measure for Results
- Foster innovation and collaboration

Public Perception of MD Waters

Source: Opinion Works (2016)

Water Protection Ranks High but...

- More than 80% as a moderate to high priority
- Only 26% believe they are contributing meaningfully to water pollution
- Most people think rainwater runoff is less of concern than other issues

Source: Opinion Works (2016)

Education is Essential

- 91% believe water pollution can be fixed
- 62% believe their own action would make a difference
- Learning about progress is encouraging

HARFORD OUVITY

Rain Garden, Bioswale, Micro-Bioretention

What are rain gardens, bioswales, and microbioretention facilities?

Rain gardens, bioswales, and micro-bioretention areas an functional landscaping features that filter rainwater and

Micro-bioretention areas are typically planted with native plants and have three layers: much, a leyer of soil, sand and organic material mixture, and a stone layer. A perforate pipe within the stone layer collects and directs the filter trainwater from large storms to a storm drain system so the facility drains within 2 days. Micro-bioretention areas are often located in parking lot islands, cul-de-sacs islands, o along roads.

Rain gardens are very similar to micro-bioretention. They collect rainwater from roof gutters, driveways, and sidewalks Rain gardens are common around homes and townhomes.

A bioswale is similar to a micro-bioretention area in the way is designed with layers of vegetation, soil, and a perforate pipe within the bottom stone layer. Bioswales typically an located along a roadway or walkway.

Who is responsible for the maintenance?

As the property owner, you are responsible for all maintenance of your rain parties, bioswale, or micro-bioretention facility.

Basic Maintenance ...

- Regularly inspect for signs of erosion, obstruction or unhealthy vegetation.
- Remove weeds and invasive plantings.
- Remove any trash in the bioretention area or the inle channels or pipes.
- Check the facility 48 hours after a rain storm to make sure there is no standing water.

Seasonal Maintenance ...

- Cut back dead stems from herbaceous plantings the beginning of the spring season.
- Water new plantings frequently to promote plant growth and also during extreme droughts.
- Replenish and distribute mulch to a depth of 3 inches.
- Remove fallen leaves in the fall season.
- Replant/replace dead plants (best time in the fall).

As a reminder...

- Do not apply excess salt and sand around the facility in
- Do not store snow and leaves on top of the bioretentior area.
- Do not remove or place fill in the facility.

Source: Opinion Works (2016)

Restoration Goals: TMDLs by the Numbers

- Phase I MS4s jurisdictions— 279 TMDLs
- Progress reporting
- Programmatic actions
- Emerging issues

- Impaired Waters that still Need a TMDL (Category 5)
- Impaired Waters that have a TMDL (Category 4a)

Source: MD's Integrated Report

A Metric to Drive Restoration Impervious Acres Treated

- Clear and straight forward permit goal
- A pragmatic solution to addressing multiple TMDLs
- Science based
- Successfully defended through highest MD court
- Considers equity across jurisdictions
- Recognizes each jurisdiction faces unique challenges and provides flexibility

Accounting for Stormwater Wasteload Allocations and Impervious Acres Treated

Guidance for National Pollutant Discharge Elimination System Stormwater Permits

August 2014

1800 Washington Boulevard, Baltimore, MD 21230-1718 | www.mde.maryland.gov 410-537-3000 | 800-633-6101 | TTY Users 800-735-2258 Larry Hogan, Governor | Boyd Rutherford, Lt. Governor | Ben Grumbles, Secretary

A focus on funding, financing and efficiencies

Environmental Financial Planning

Annual Report on Financial Assurance Plans and the Watershed Protection and Restoration Program, Maryland Department of the Environment, October 2016,

- Diverse practices used
- In total, 26% ISR complete at a cost of about \$19,000 per acre
- All jurisdictions showed they had budgets to fund 75% ISR
- A projected 102% over full permit at a cost of about \$30k per acre
- Wide disparity in costs
- Funding gap is decreasing
- About a \$1.1 billion investment at about \$30k per acre

Flexibility Leading to Meaningful Local Benefits

Innovative Finance, P3 and Pay for Performance

- Increase project competitiveness
 - Phasing
 - Scale
 - Leveraging
- P3 Solutions
 - Incentives
 - Pay for performance
 - Procurement

Markets: Water Quality Trading

Improving Program Efficiencies

Better Tools

- Online reporting database
- Better landuse
- Online watershed model
- Cost and optimization
- Expanded list of BMPs

Efficient Restoration Permitting

- A separate path for restoration project permitting
- Dedicated staff to review restorative projects
- Online collaboration
- Faster permit turnaround time for most projects
- Improved customer service

Measuring for Results

- Measure
 - Effectiveness of restoration programs
 - Effectiveness of practices at the project scale
 - Trade-offs in resource improvements
- Pooled monitoring
 - Collaboration to answer critical questions
- Assist regulators, practitioners and funders
- Foster innovation

Foster Innovation and Collaboration

"This really is an innovative approach, but I'm afraid we can't consider it. It's never been done before."

Lessons Learned in Restoration & Program
Implementation: From Program Startup to Innovation in
BMP Design

May 18, 2017 8:30 AM to 4:00 PM Manilime institute of Technology (MITAGS), Linthicum, MD

CWEA Stormwater Committee 2017 Spring Seminar

Who should attend?

MS4 program compliance managers, watershed planners, water quality specialists, and environmental consultants

\$80 CWEA Members/\$90 Non-members \$30 Government and Student Rate (w/ID)

After May 5: \$95 Members /\$105 Non-members

PDHs will be awarded

Register Online

https://www.memberleap.com/members/evr/reg_event.php?org code=CWEA&evid=9003375 **Looking Forward**

- Finalizing Phase II MS4
- Bay TMDL Phase III WIP
- Developing next Phase I MS4
- Next round of FAPs
- Completing current Phase I

Thank You!

D. Lee Currey
Acting Director, Water Management
Lee.currey@maryland.gov