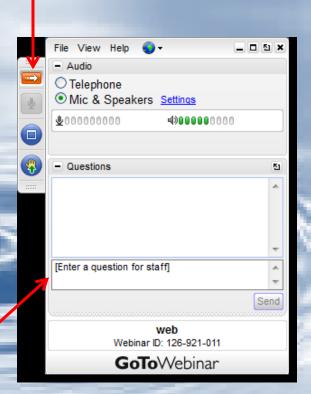


CAWWA/WEA Webinar Series Water Reuse – A User's Perspective

Joseph Walsh, Covanta Energy
Eppa Rixey, Lagunitas Brewery
Baji Gobburi, Cambrian Innovations
Joel Bowdan, Michael Baker

Hosted by the Joint CAWWA/WEA Water
Reuse Committee
May 19, 2016


Grab Tab: Hide/unhide the Control Panel

Before we begin...

Submit questions at any time.

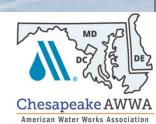
The Organizer will read each question for the presenters to answer.

Questions: If you have any questions during the webinar, type your question into the Questions pane and click **Send**.

Mary Cores 11

CPC Credits

- CWEA has been approved to provide Continuing Professional Competency (CPC) credit for MD PEs
- Must attend the entire webinar duration.
- An e-mail Certificate will be sent to webinar attendees.
- At multiple attendee sites, the attendee who logs on (Site Monitor) is responsible for distributing CPCs to the other attendees.



Agenda

- Purpose and Goals:
- Moderators:

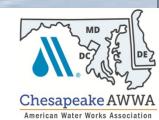
 Leita Bennett, GHD Inc.
 Steve Skripnik, LimnoTech
- Presentations:
- Final Q&A

Thank you to our Sponsors!



Purpose of Today's Webinar

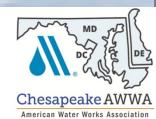
- Understanding reclaimed water from the User's perspective
- User's needs and challenges
- How we can assist our User's to promote reuse



Margaco et a 11

Joint AWWA/CWEA Water Reuse Committee Goals

- Public outreach and advocacy
- Public education
- Coordination with regulatory agencies and other stakeholders
- Representation of AWWA/CWEA
- Understanding all Stakeholder's needs



PROPERTY 13

Joseph Walsh, Covanta Energy

- Regional Environmental Manager for Covanta's Mid-Atlantic Region.
- Responsible for environmental management and oversight of Energy from Waste, transfer station, metals recycling and e-waste processing operations in Pennsylvania, Virginia and Maryland.
- Over 25 years' experience in the not-for-profit, consulting and industry sectors.
- Certified Hazardous Materials Manager.
- Masters in Urban Affairs and Planning from Virginia Tech.
- Chairman of the Environmental Commission in Sparta. NJ.

Water Reuse

Chesapeake Water Environment Association May 19, 2016

Covanta Overview

Waste Disposal

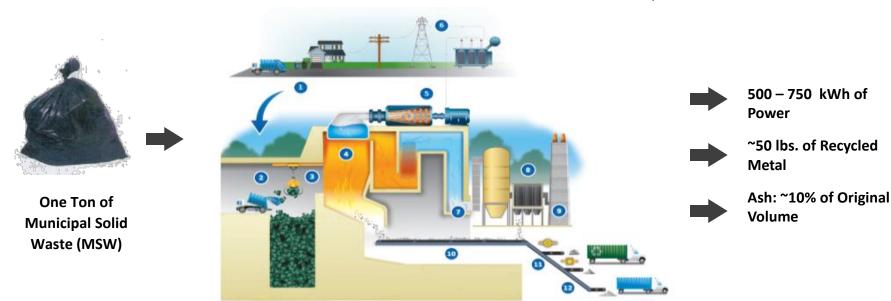
- 45 EfW facilities
- Process ~20 million tons of waste annually

Energy Generation

- >1,500 MW base load electricity capacity
- Renewable energy for one million homes

Metals Recycling

- Recycle ~500k tons of ferrous and non-ferrous metal annually
- Five Golden Gate Bridges and over one billion aluminum beverage cans



Energy-from-Waste Process

After reducing, reusing and recycling, the remaining materials are used to produce clean renewable energy in Covanta Energy's EfW facilities.

How We Do It:

- 1. Post-recycled waste is picked up
- 2. Delivery to EfW Bunker
- 3. Transferred to Combustion Chamber
- 4. Clean Combustion Heats H₂O to make steam
- 5. Steam is used to generate electricity
- 6. Electricity is distributed to local grid
- 7. State of the art air pollution control technologies captures and cleans gases
- 8. Fabric filter baghouse controls emissions
- 9. Emissions are continuously monitored
- 10. Particulate matter is collected
- 11. Metals are recovered for recycling
- 12. Residual material is beneficially reused or disposed of in landfill

What Do We Use Water For?

Steam Cycle / Boiler Feedwater

- Requires highest quality water
- High temperature & pressure steam applications require demineralization process, either through ion exchange or reverse osmosis
- Generally a closed-loop process with make-up for boiler blow-down
- Combined heat & power (CHP) or steam export facilities have higher make-up requirements because of incomplete condensate return

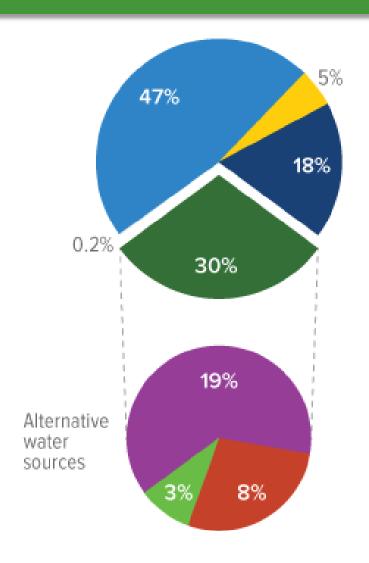
Cooling Towers

- Largest water demand
- Make-up required to replace evaporation loss and blow-down

Scrubber Process Water

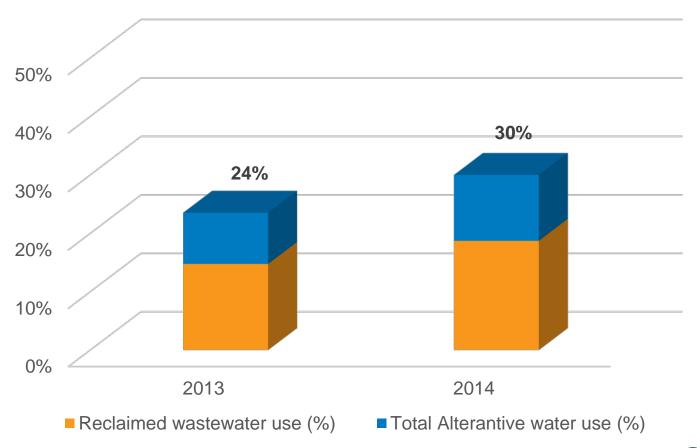
- Used for temperature control and acid gas reduction
- Opportunity for water reuse

Ash Quenching


- Water added to ash to control dust
- Opportunity for lower quality water use

Where Do We Get Our Water?

Currently, about 30% of our water use is met by alternative sources

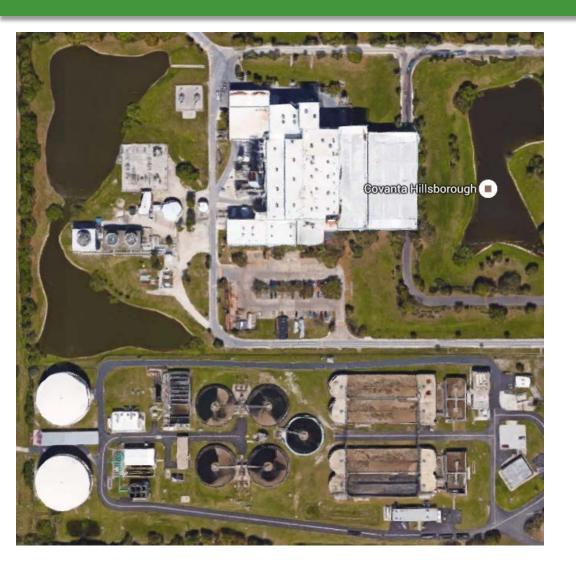

- city water
- well water
- river water
- alternative water sources
 - reclaimed wastewater
 - saline aquifer
 - cooling discharge
 - stormwater

Growth in Alternative Sources

From 2013 to 2014, our total use of alternative water sources has grown from 24% to 30%, and our reclaimed wastewater use has grown from 9% to 11%.

Drivers of Water Reuse Projects

- Primary Benefits: Reducing potable water usage & lessening environmental impacts
- Availability of alternative water source / infrastructure
 - Several facilities well positioned relative to POTWs
- Revenue opportunity
 - Some industrial waters can be used in our process
- Water quality
 - Can it be cleaned up to meet needs? And at what cost?
 - Are there components in the water that are beneficial to the process?
- Ownership structure
 - ~50% of our facilities are municipally owned, which can help facilitate certain reuse projects


Project Example: Delaware Valley

- Water Source: POTW Discharge
- Water Use: Cooling Tower
- Uses GE RePAK system
 - Reverse osmosis (RO) coupled with ultrafiltration
- Commissioned in 2014
- Recipient of GE's Return on Environment Award
- Reduced treated city water consumption by ~1.3 MGD
- Cost savings ~\$600 \$700k / year

Additional POTW Discharge Reuse

3 Additional Florida Facilities

- Hillsborough County
- Pasco County
- Lee County

• Key Drivers:

- Proximity
- Co-ownership (Covanta operates the facilities on behalf of municipal clients)

Project Example: Industrial Wastewater

- Facility: Southeastern
 Massachusetts
- Water Source: Non-Hazardous Industrial Wastewater
- Water Use: Air Pollution Control Equipment (Scrubbers)
- Provides an additional revenue stream for the facility
- Some wastewater may result in cobenefits:
 - Our Niagara and Indianapolis facilities have been able to reduce air pollutant control reagent (ammonia) usage by processing ammonia-containing liquid waste streams

Project Example: Water Reduction

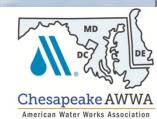
- Facility: Indianapolis
- Water Source: RO Reject Water
- Equipment: Concentrated Reject Reverse Osmosis System (CRRO)
- Reduces RO reject water by 80 million gallons / year
- Subsequent reuse of CRRO water in process reduced city water use by 80 million gallons / year

Project Example: Cooling Water Discharge

- Facility: Montgomery County Resource Recovery Facility
- Water Source: Dickerson
 Generating Station cooling water
 discharge canal
- Water Use: Cooling tower water

Challenges

- Return on Investment (ROI) / Competition with our capital needs
- Availability of alternative supplies
 - Location
 - Consistency
 - Size
- Overall water consumption may increase
 - Treatment necessary can generate a wastewater stream, e.g. alternative water sources requiring reverse osmosis treatment
- Be realistic about O&M costs & time


Thank You

Margace et a 11

Eppa Rixey, Lagunitas

- Studied Mechanical Engineering at Vanderbilt University.
- Worked for Bain and Company
- After years of home brewing and obsessing over craft beer, he was able to merge his personal and professional interests by landing his dream job as
- Strategic Planning Manager for Lagunitas Brewing Company
- Works on a variety of projects related to operations, sustainability, and corporate strategy.

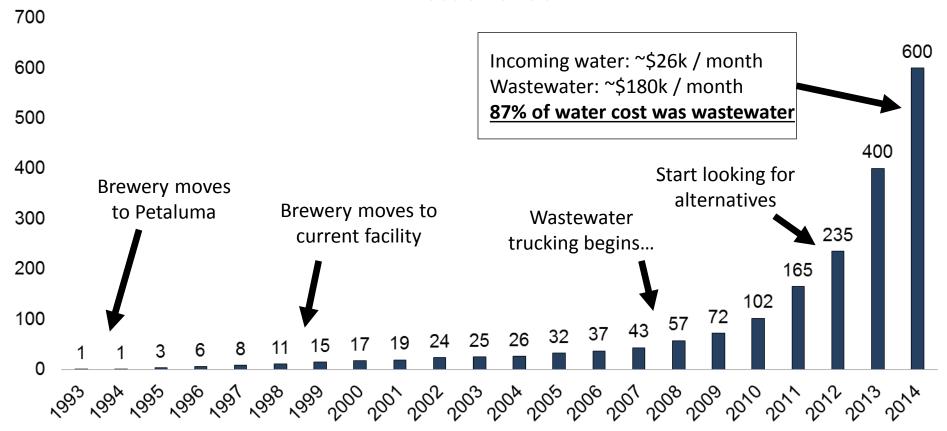
Baji Gobburi, Cambrian Innovations

- Industrial water executive with two decades of leadership in water and clean energy industries
- Leads Cambrian's global business development for
- Previously with Energy Recovery Inc. and held various management positions at General Electric (GE) Water & Process Technologies.
- MBA from Chicago's Booth School of Business and M.S. in Hazardous Waste Management from Wayne State University
- CE degree from Osmania University in India.

ECOVOLT SUSTAINABLE WASTEWATER TREATMENT

Industrial Water Reuse at Lagunitas Brewing Company

Eppa Rixey

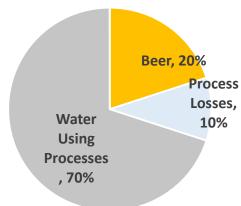

Strategic Planning Manager | Lagunitas Brewing Company **Baji Gobburi**

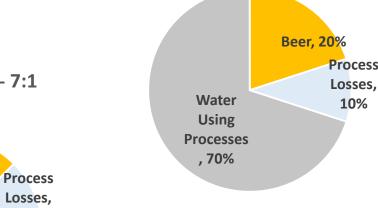
VP of Sales & Marketing | Cambrian Innovation

Lagunitas and Water

Lagunitas Brewing Company 21 Years of Growth 1993-2014

in 000's Barrels





Water:Beer

Efficient Brewery - 4:1

Typical Brewery - 7:1

Water Using **Processes** ,77.5%

Beer,

12.5%

10%

Reuse Brewery - 2.5:1

Beer,

29%

Process

Losses, 10%

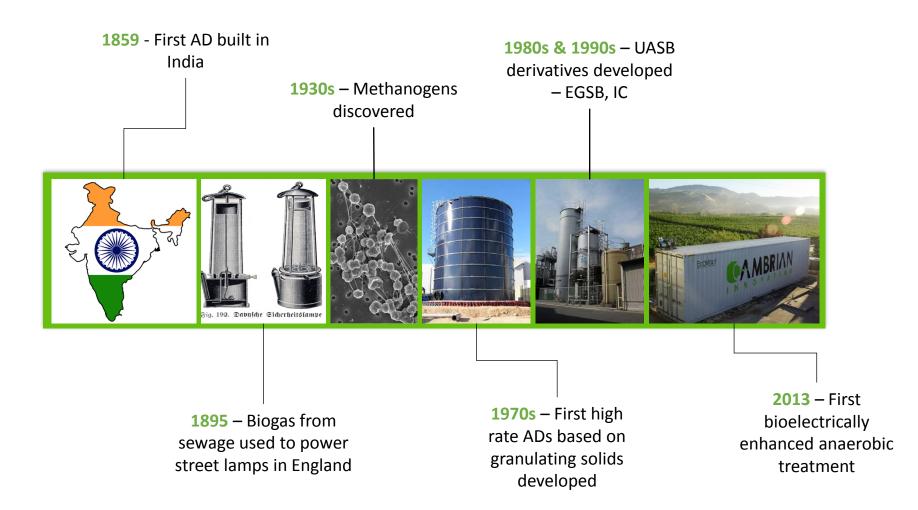
Cannot Use Recycled

Water,

21%

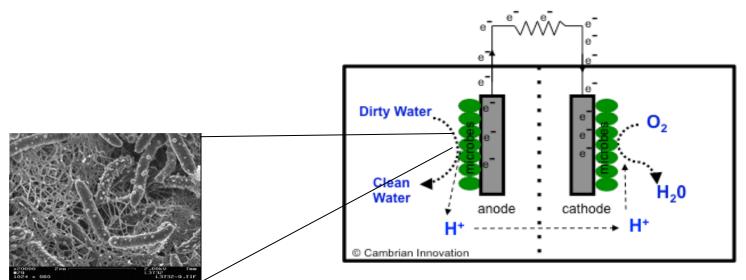
Can Use

Recycled


Water, 40%

Brewery Wastewater Problem

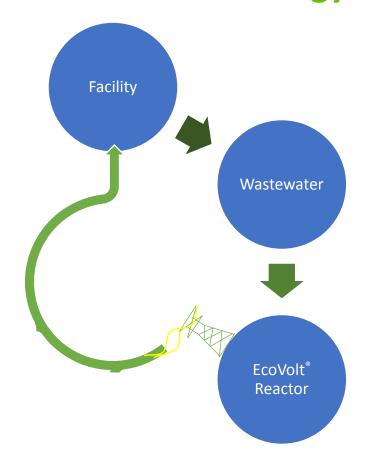
- Breweries and other industrial food and beverage producers generate high biological oxygen demand (BOD) wastewater that is expensive to treat.
- Opportunity: Wastewater contains energy up to 3 kWh per kg BOD.
- Cambrian's EcoVolt leverages a cutting edge biological process to simply and robustly capture this energy, turning an economic drain into a source of operational savings and sustainability.

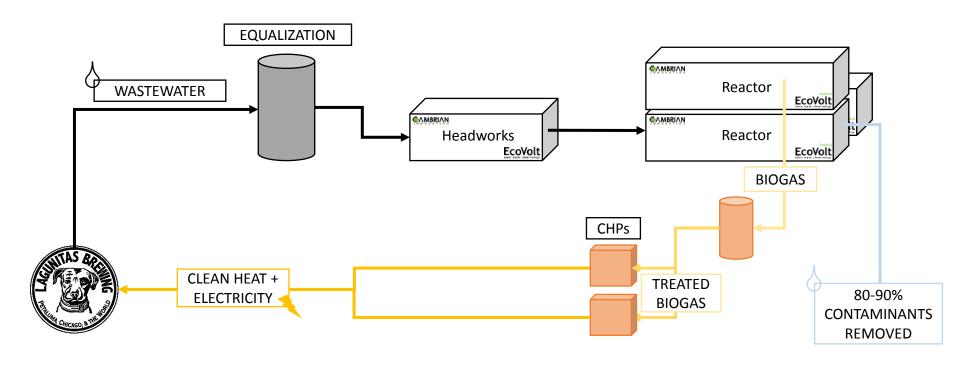

EcoVolt® Is the Next Generation of Wastewater-to-Methane Systems

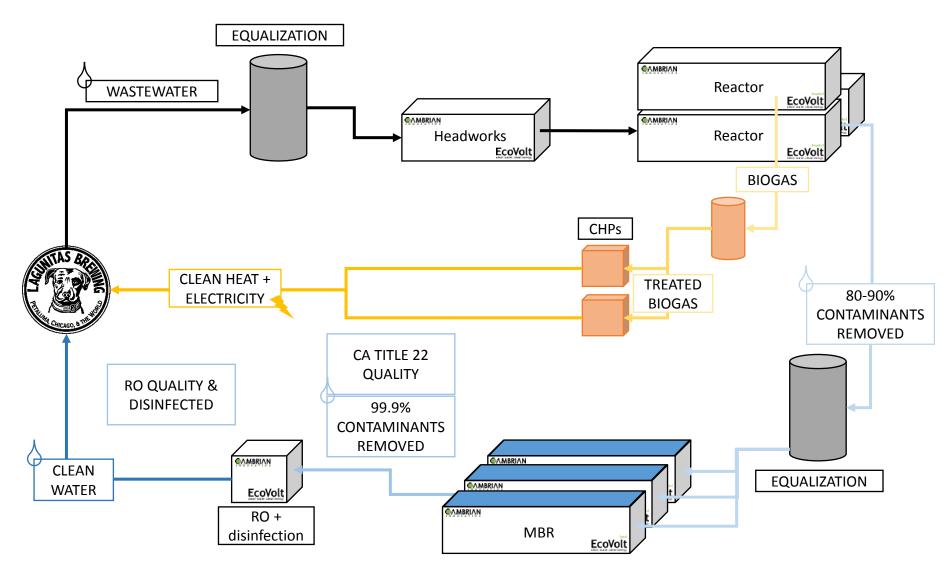
Bioelectrical Systems (BES)

Nanowires produced by Shewanella putrefacians (From Gorby et al., 2006).

Electrically Active Microbes Help:

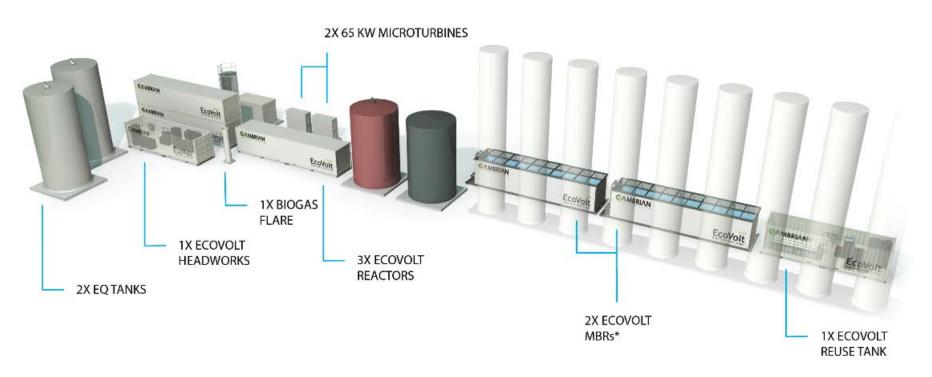

- "Anodes" treat wastewater
- "Cathodes" generate products
- System collects operating data from living microbes

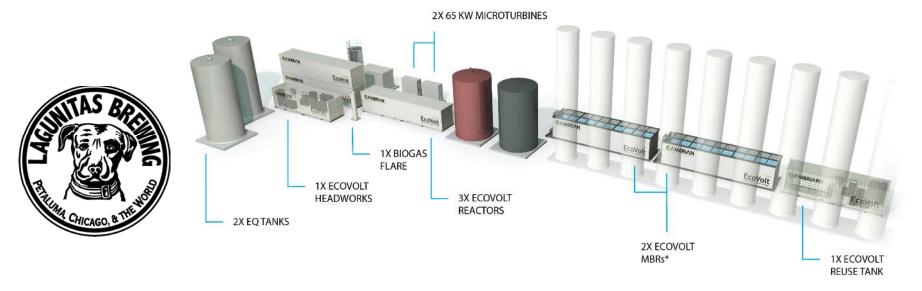

Closed-Loop Two-Part Solution for Energy and Water


EcoVolt Energy Extraction and Management

EcoVolt Reuse w/ Secondary and Tertiary Treatment

The Cambrian Innovation Solution at Lagunitas




EcoVolt at Lagunitas

*At full capacity there will be 3x EcoVolt MBRs

*At full capacity there will be 3x EcoVolt MBRs

Impact...

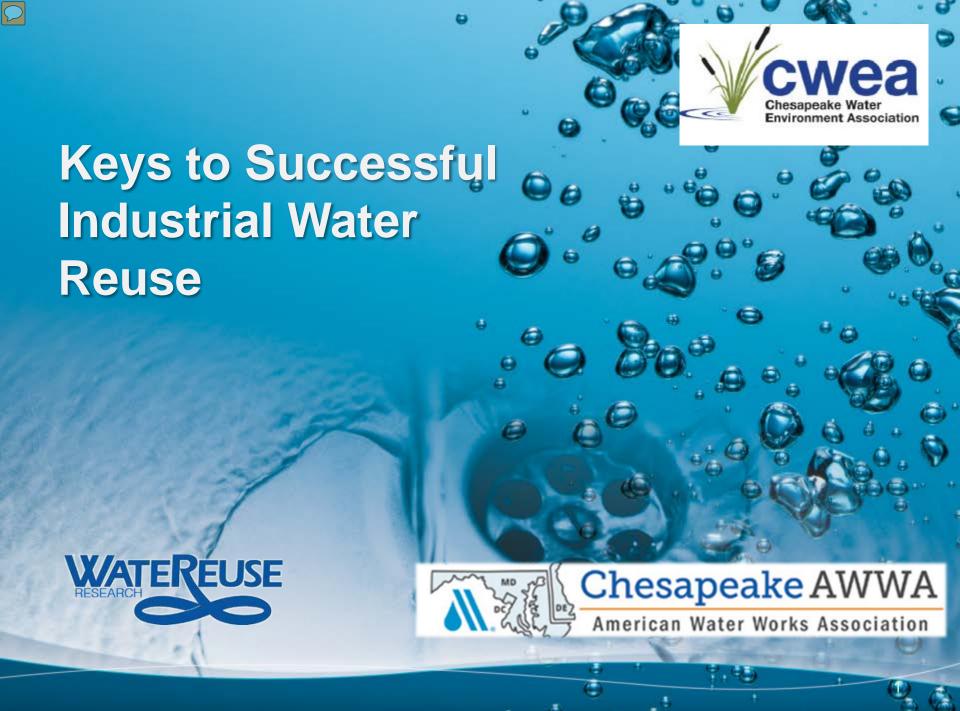
- 120 KW of clean energy
- 80,000 GPD of potable water
- > 40% reduction in facility input water needs
- > 70% reduction in the facility's total water discharge
- > 1,600 metric tons of CO₂ per year eliminated
- Very positive IRR; payback period <3 years

THE PERSON NAMED IN

Joel Bowdan III, PE

Joel Bowdan III, PE Technical Manager

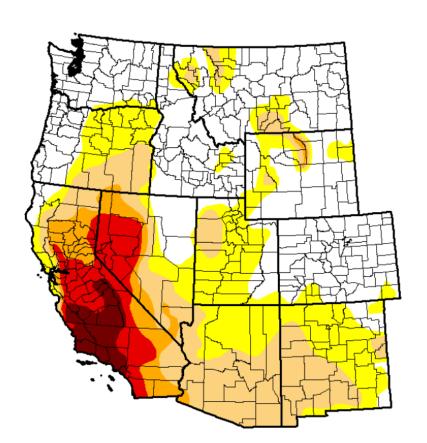
Michael Baker


- 23 Years Experience in Water/Wastewater
- 12 Years Recycled Water Design & Retrofit
- Civil PE (CA & MI)
- Member AWWA
- CA WateReuse Industrial Reuse Committee

Co-Principle Investigator for WRF 12-03

"Evaluation of Historical Reuse Applications and Summary of Technical/Regulatory Issues and Related Solutions for Industrial Reuse Projects" (https://watereuse.org/research/research-projects/)

WateReuse Research Foundation Disclaimer


This presentation is sponsored by the *WateReuse Research* Foundation and cosponsored by the San Diego County Water **Authority**. The Foundation, its Board Members, and the project cosponsors assume no responsibility for the content of this presentation or for the opinions or statements of facts expressed in the presentation. The mention of trade names of commercial products does not represent or imply the approval or endorsement of the WateReuse Research Foundation, its Board Members, or the cosponsors. This presentation is provided solely for informational purposes.

Why Reuse?

U.S. Drought Monitor
West

May 3, 2016

(Released Thursday, May. 5, 2016)
Valid 8 a.m. EDT

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	43.75	56.25	33.05	13.85	8.71	2.81
Last Week 4/26/2016	38.85	61.15	34.76	14.79	8.71	2.81
3 Month's Ago 2/2/2016	37.77	62.23	38.46	21.39	11.69	5.70
Start of Calendar Year 12/29/2015	33.17	66.83	45.07	29.30	15.92	6.85
Start of Water Year 9/29/2015	22.77	77.23	57.81	42.42	26.50	7.62
One Year Ago 5/5/2015	23.35	76.65	63.22	39.05	17.54	7.95

Intensity:

D0 Abnomally Dry

D3 Extreme Drought

D4 Exceptional Drought

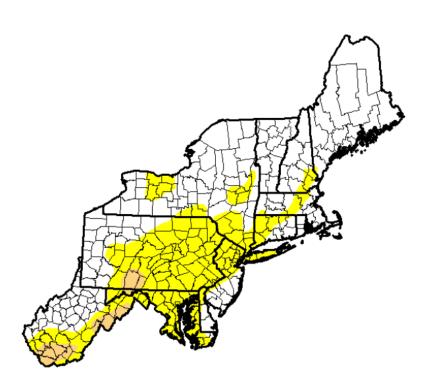
D1 Moderate Drought
D2 Severe Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:

Brian Fuchs

National Drought Mitigation Center


http://droughtmonitor.unl.edu/

Why Reuse?

U.S. Drought Monitor
Northeast

May 3, 2016

(Released Thursday, May. 5, 2016)
Valid 8 a.m. EDT

Drought Conditions (Percent Area)

		_	,		,	
	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	62.87	37.13	3.47	0.00	0.00	0.00
Last Week 4/26/2016	60.97	39.03	5.04	0.00	0.00	0.00
3 Month's Ago 2/2/2016	71.89	28.11	3.27	0.00	0.00	0.00
Start of Calendar Year 12/29/2015	62.10	37.90	6.60	0.00	0.00	0.00
Start of Water Year 9/29/2015	42.41	57.59	9.00	0.00	0.00	0.00
One Year Ago 55/2015	49.64	50.36	0.00	0.00	0.00	0.00

Intensity:

D0 Abnormally Dry

D1 Moderate Drought

D2 Severe Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:

Brian Fuchs

National Drought Mitigation Center

http://droughtmonitor.unl.edu/

Recycled Water (Reuse) Implementation Challenges - Clients

- Recycled water quality generally poorer than potable (TDS, nutrients, etc.)
- Reuse clients must understand their process WQ requirements to determine "fit for use" and additional treatment
- Regulatory/permitting/inspection requirements for reuse not clearly understood at client level.
- Timelines for regulatory and permitting approvals.

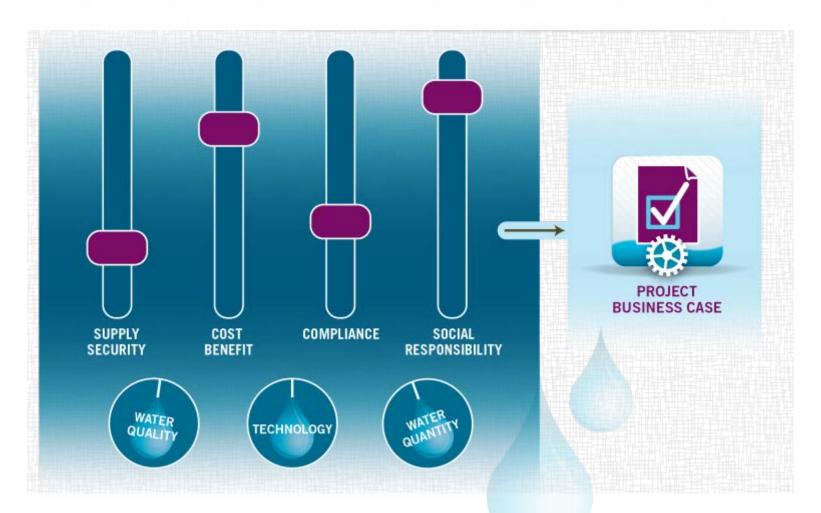
The Inspiration

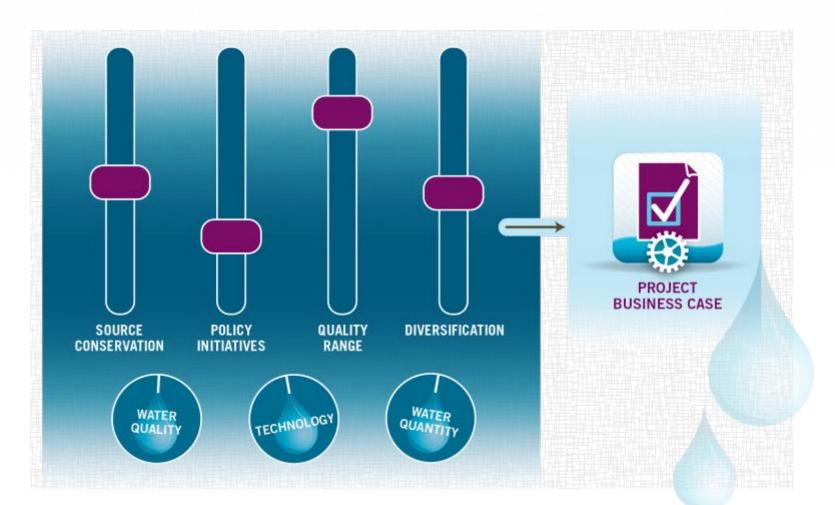
"It shouldn't be this difficult."

- Potable water shortages are dictating that the world needs more IWR
- Industry is understanding that it needs to implement IWR
- Let's make it cheaper, faster, better & <u>easier</u>

Methodology

Looking under the hood of recently completed projects...


- Interviews & Case Studies
 - Experience: What worked/didn't work?
 - What do they wish they had known?
 - What would they do differently?
- Establish WQ parameters for typical industrial applications
- Develop Model Template & Project Charter


Identification of Drivers: Reuse Customers

Identification of Drivers: Reuse Customers

Findings: Points of Departure

- Business Drivers & Objectives
- Views of Time & Money
- Measures of Success
- Decision Making Processes
- Regulatory Landscape
- Language & Terminology

Drivers & Objectives

Water Customer

- Supply Security
- Cost-Benefit
- Compliance
- Social Responsibility

Water Provider

- Source Conservation
- Policy Initiatives
- Diversification
- Minimize Wastewater
 Disposal Costs

Views of Time & Money

Water Customer

- Time IS Money
- Single Source Funding
- Minimal Approval Process Required
- Implement Quickly & On-Schedule

Water Provider

- Generally Used to Long Periods
- Regulatory Approvals
- Multiple Source Funding
- Cost "Pass-Through"

Metrics & Measures of Success

Water Customer

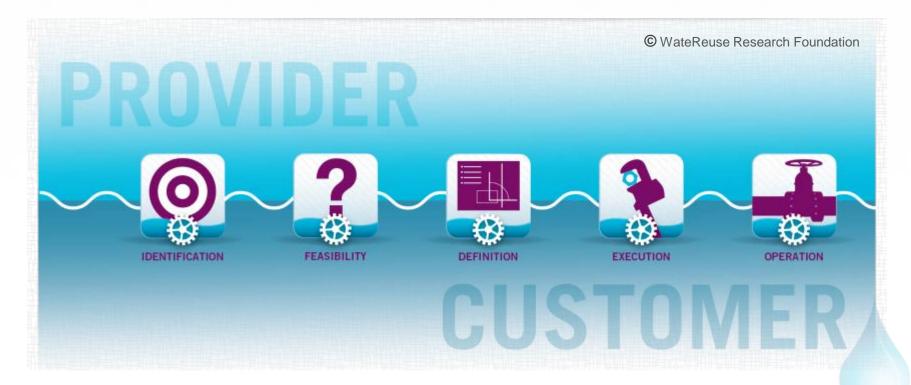
- ROI of 6-12 Months for Small Projects
- Overall Cost Savings
- Operational Benefits
- Reliability
- Other Internal Goals

Water Provider

- ROI 5-10 Years for Infrastructure
- Social/Environmental Benefits > Cost Savings
- Minimize Customer Complaints

Departure to Convergence...

Solution: bring providers and end users *together* with a shared template to plan & implement projects


Advantages/Best Practices:

- Clearly identify & align goals & objectives
- Maintain a consistent sequence of activities
- Surface and manage risks end-to-end
- Foster communications / engage all stakeholders

Shared Framework for Reuse

Purpose: to provide a common process/interface through which providers and customers can align efforts and collaborate more effectively in the development of IWR projects

Document business drivers and identify customer industries/operations with high potential for reuse

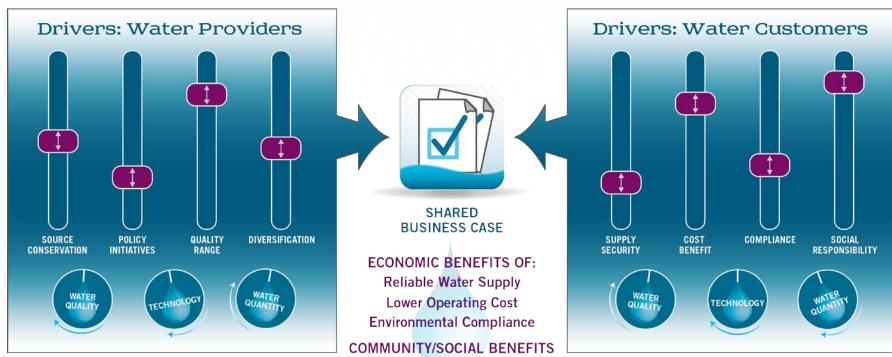
IDENTIFICATION

Document business drivers and review operations infrastructure for potential reuse applications

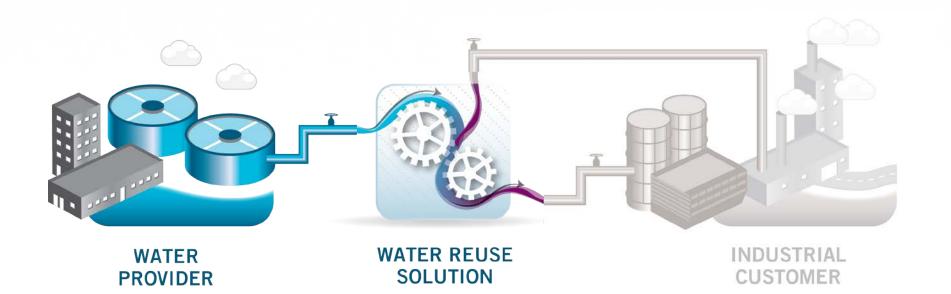
Assess system infrastructure, capacity/demand, regulatory issues, funding scenarios, etc.

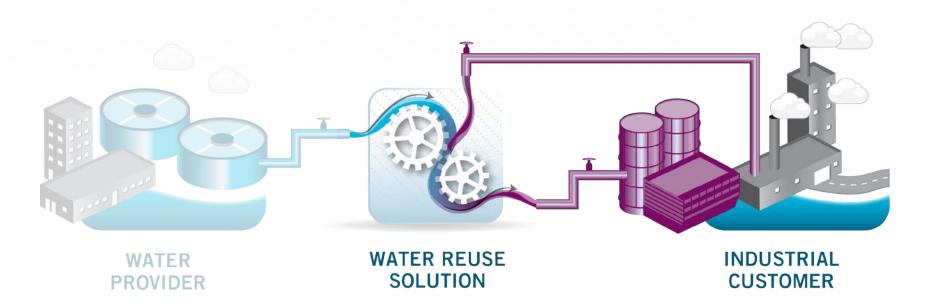
Finalize agency business case, explore reuse supply options, select optimal project approach

DEFINITION

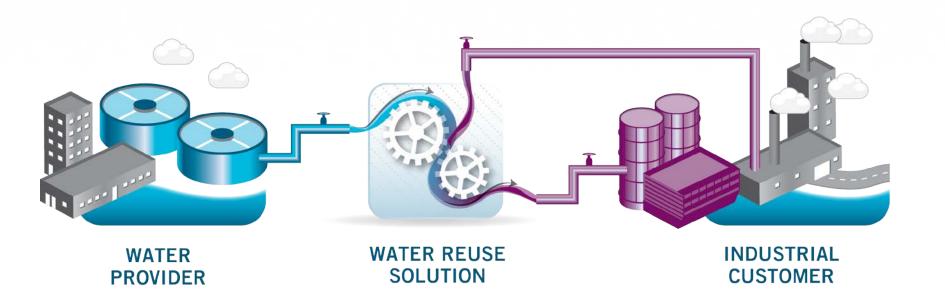

Finalize plant business case, explore reuse source options, select optimal project approach

Shared Business Case




Provider-Owned

Development Options


User-Owned

Development Options

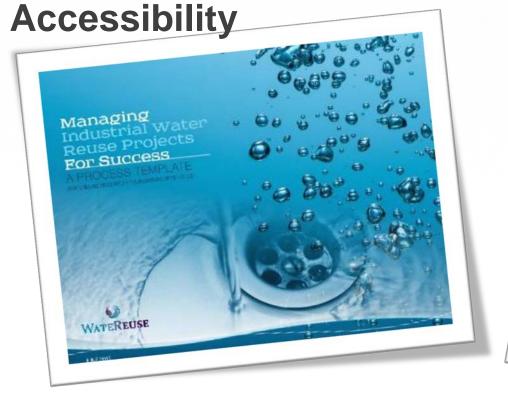
Jointly-Owned

Lead / support E&C effort as appropriate to selected option; staff the integrated project team

EXECUTION

Lead / support E&C effort as appropriate to selected option; staff the integrated project team

Option 1: Operate & maintain agencyowned facility supplying recycled water to customer



OPERATION

Model Template & Project Charter

WRF 12-03: "Evaluation of Historical Reuse Applications and Summary of Technical/Regulatory Issues and Related Solutions for Industrial Reuse Projects" (https://watereuse.org/research/research-projects/)

Contact / Questions

Joel Bowdan

jbowdan@mbakerintl.com

Michael Baker

Rich Layton

rlayton@transformcom.com

- Fall 2016 Water Reuse Seminar
- Looking for topics
 - -Relevant
 - -Timely
 - -Innovative

...watch your inbox for announcements with additional details

2016 Webinar Schedule

Have Suggestions or topics to present? Contact the Technical Education Committee.

Steve Skripnik – <u>sskripnik@limno.com</u> Ed Shea – <u>eshea@Greeley-Hansen.com</u>

Join CWEA and get involved!
 www.chesapeakewea.org

- Upcoming free CWEA webinars
 - Announced through CWEA email
 - Calendar at chesapeakewea.org

Month	Hosting Committee
February	Stormwater
May	Water Reuse
June	Biosolids and Residuals

