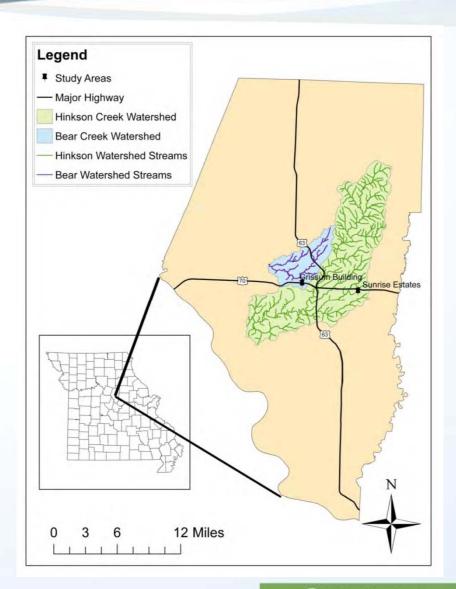
Case Study: Evaluating Retrofit Urban Best Management Practice Performance and Lessons Learned

Nick Muenks, Marc Leisenring, Mark Willobee – Geosyntec Consultants, Inc.

Nicki Fuemmeler - Boone County, Missouri, Resource Management



- Project Background
- Project Objectives
- Project Design Step Pool
- Project Design Bioretention
- Field Sampling
- Results
- Lessons Learned

Background

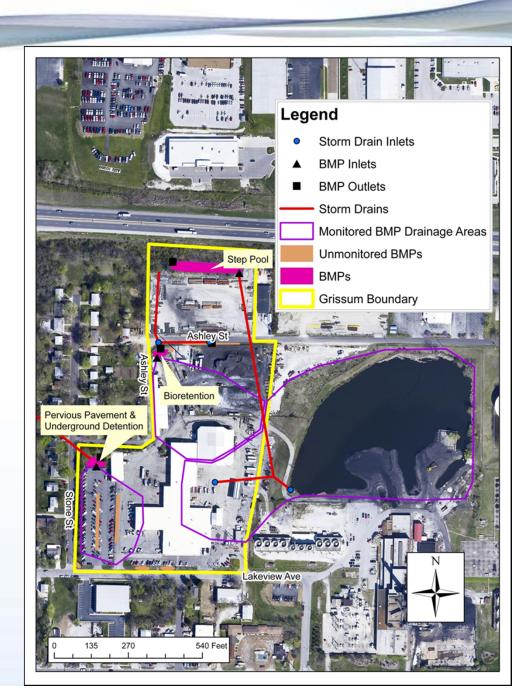
- Hinkson Creek
 - On 303(d) List since 1998
 - Aquatic life impairment
- Impairment Reason
 - Urban runoff sources
 - Pollutants unknown
- TMDL (2011)
 - Reduce stormwater runoff
 - Help "No longer impaired"

Project Objectives

- Characterize reduction of common urban stormwater pollutants
- Quantify runoff volume reduction

- Implement BMPs and study their performance
 - Pollutant load reductions
 - Hydrologic response
 - Variety of storm events over several years

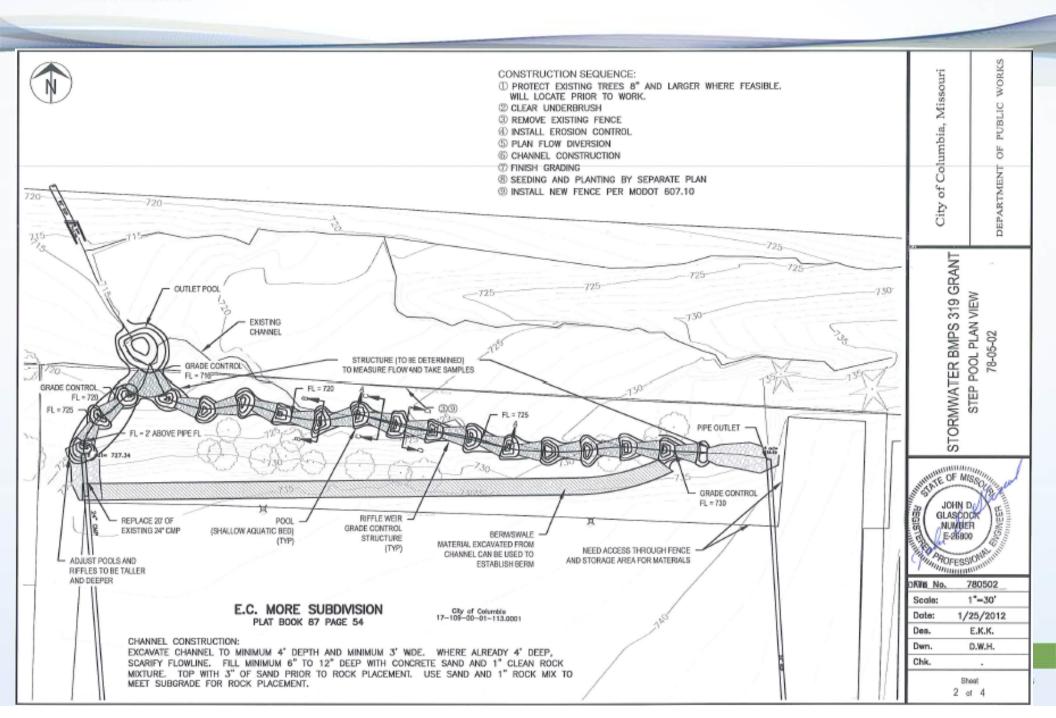
Existing Conditions


- Grissum Building
 - 10 acres
 - Industrial operations
 - No stormwater management
- Owned and operated by the City

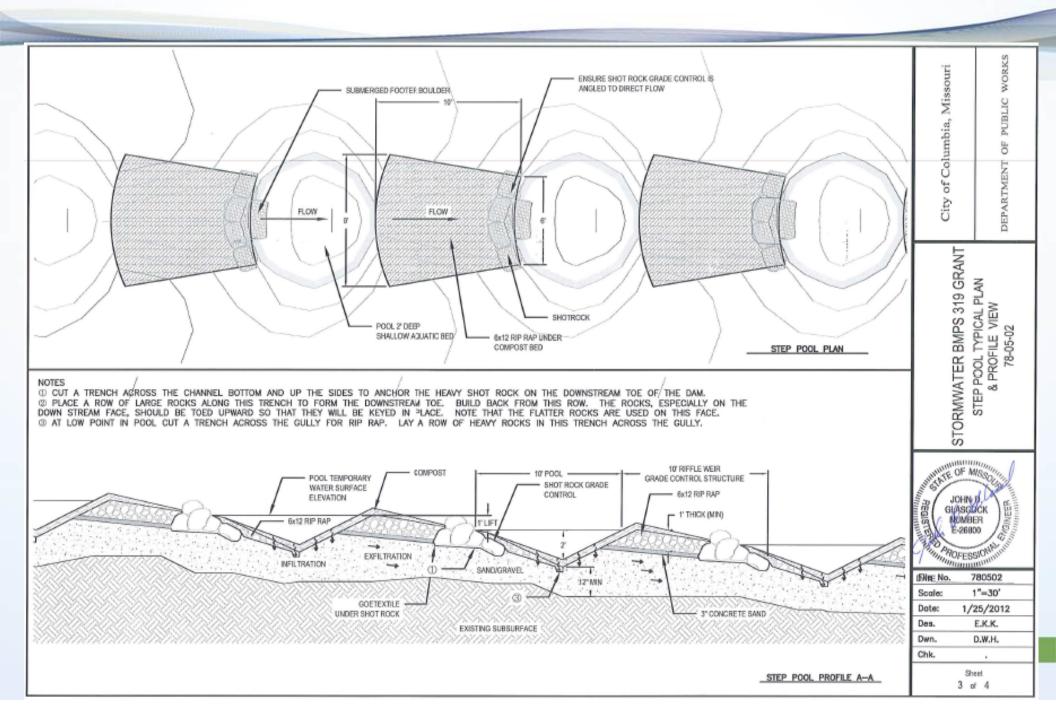
Project Design

- Two BMPs implemented
 - Bioretention cell
 - November 2012 –
 January 2015
 - 11 rainfall events
 - Step pool system
 - September 2012 –
 December 2014
 - 20 rainfall events

Project Design


- Step pool system
 - Treatment area 2.2 acres
 - With sand filters

- Bioretention
 - Treatment area 1.3 acres
 - With underdrains



Project Design – Step Pool

Project Design - Step Pool

Project Design – Step Pool

Project Design – Bioretention

Project Design – Bioretention

- Auto Sampler
 - Hach Sigma 900 max
 - Installed at inlet and outlet
- H-flumes for flow
- Storm Event
 - >0.2 inches rain in 24-hours
 - Tipping bucket rain gauge
- Min. antecedent dry period
 - 6 hours

Field Setup

- Ultrasonic Sensor
 - To measure depth of water
 - At inlet and outlet
 - For flow computations
- Records collected
 - Water level
 - Flow
 - Precipitation
 - Every 5 minutes

- Sampling methodology
 - Flow-weighted composite samples
 - Event mean pollutant concentrations
 - Sample aliquots composited into a 2.5 gal bottle
 - Constant flow volume/ variable time approach
 - All samples were containerized, preserved and handled per QAPP and lab quality control manual.

Field Sampling

Target pollutants

Parameter	Analytical Method	Performance Range or Reporting Limit	Reporting Units
Total Recoverable Copper	EPA 6020A	5	μg/L
Total Recoverable Lead	EPA 6020A	5	μg/L
Total Recoverable Zinc	EPA 6020A	5	μg/L
Total Dissolved Solids (TDS)	SM 2540C	1	mg/L
Total Phosphorus (TP)	SM 4500PE	50	μg/L
Total Nitrogen (TN)	SM4500N & EPA 354.1	0.5	mg/L
Total Suspended Solids (TSS)	SM 2540D	1	mg/L
Volatile Suspended Solids (VSS)	SM 2540E	1	mg/L
Chemical Oxygen Demand (COD)	SM 5220D	10	mg/L

Field Sampling

- Laboratory analyses
 - Standard analytical methods
 - Methods for the Examination of Water and Wastewater
 - 40 CFR 136

Baseline Sampling Results

Baseline sampling

Errent Data	Inlet Flow		Inlet Baseline EMC (mg/L)								
Event Date	(cfs)	TDS	TSS	VSS	TP	TN	COD	Cu	Pb	Zn	
4/17/2014	0.03	1,600	10	1	0.14	5.5	1	0.003	0.003	0.003	
7/21/2014	0.79	821	26	15	0.17	19.2	1	0.007	0.003	0.045	
	Storm Flow (cfs)		Inlet Storm EMC (mg/L)								
Minimum	0.10	132	146	22	0.22	0.3	26	0.003	0.003	0.065	
Average	0.88	461	898	80	0.60	2.6	150	0.024	0.029	0.233	
Maximum	4.01	908	4,160	275	1.83	6.7	702	0.082	0.143	0.676	
Median	0.66	483	369	42	0.43	2.1	84	0.018	0.016	0.180	
		Outlet Baseline EMC (mg/L)									
Exant Data	Outlet				Outlet B	aseline EMO	C (mg/L)				
Event Date	Outlet Flow (cfs)	TDS	TSS	VSS	Outlet B	aseline EMO	C (mg/L)	Cu	Pb	Zn	
Event Date 4/17/2014		TDS 1,460	TSS 6	VSS 2				Cu 0.003	Pb 0.003	Zn 0.003	
	Flow (cfs)				TP	TN	COD				
4/17/2014	Flow (cfs) 0.03	1,460	6	2	TP 0.07 0.16	TN 8.1	COD 1	0.003	0.003	0.003	
4/17/2014	Flow (cfs) 0.03 0.76 Storm	1,460	6	2	TP 0.07 0.16	TN 8.1 14.8	COD 1	0.003	0.003	0.003	
4/17/2014 7/21/2014	Flow (cfs) 0.03 0.76 Storm Flow (cfs)	1,460 821	6 17	12	TP 0.07 0.16 Outlet	TN 8.1 14.8 Storm EMC	COD 1 1 (mg/L)	0.003 0.006	0.003	0.003 0.033	
4/17/2014 7/21/2014 Minimum	Flow (cfs) 0.03 0.76 Storm Flow (cfs) 0.11	1,460 821 174	6 17 23	2 12 5	TP 0.07 0.16 Outlet	TN 8.1 14.8 Storm EMC 0.3	COD 1 1 (mg/L) 22	0.003 0.006	0.003 0.003	0.003 0.033 0.029	

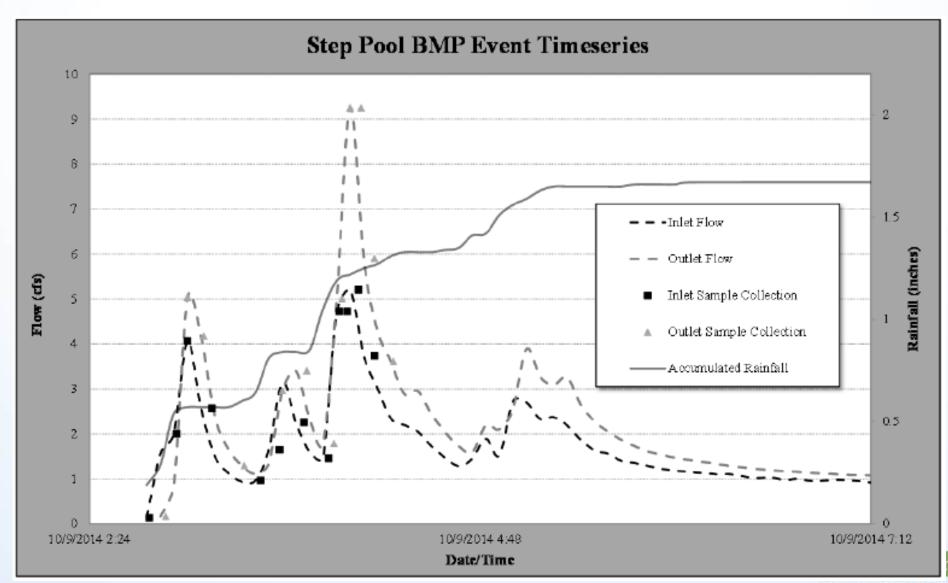
Precipitation and Flow

	Antecedant		Precipitation	on
Event Date	Dry Period (days)	Total (in.)	Max Intensity (in./hr.)	Duration (hrs.)
10/5/2012	7.0	0.44	0.48	6.4
10/23/2012	4.1	0.57	0.48	7.6
11/11/2012	6.5	0.97	0.48	6.9
1/29/2013	2.2	0.7	3.36	0.7
3/17/2013	6.5	0.32	0.24	5.0
4/10/2013	3.2	0.42	2.28	3.8
4/17/2013	1.7	0.46	2.16	0.5
4/23/2013	5.2	0.4	0.36	4.0
7/29/2013	3.8	0.25	0.96	1.1
8/2/2013	4.6	1.1	2.88	2.6
8/12/2013	6.4	0.71	2.16	1.7
9/19/2013	2.9	0.85	3.36	2.3
9/28/2013	8.5	0.46	1.68	1.1
10/30/2013	1.1	0.28	0.6	2.2
3/27/2014	0.7	0.41	3.84	1.6
7/8/2014	9.1	1.37	4.2	3.8
8/16/2014	8.6	1.29	1.56	16.3
10/9/2014	6.1	1.67	2.4	3.1
11/24/2014	19.3	0.69	0.6	21.2
12/6/2014	8.4	0.97	0.24	18.0

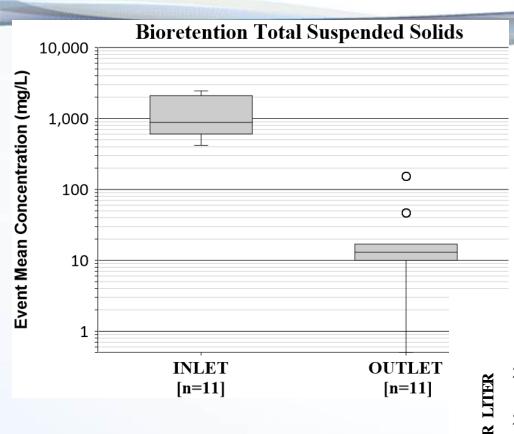
Step Pool Maturation

Results – Step Pool

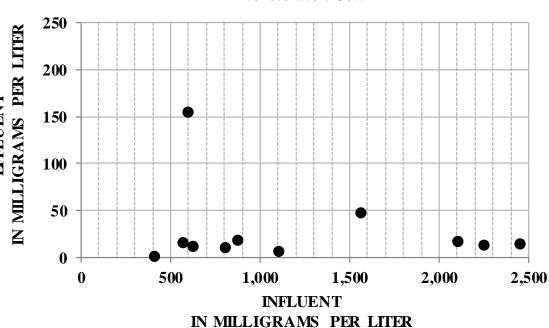
	Inlet EMC (mg/L)						Outlet EMC (mg/L)											
Event Date							-		_							_		-
	TDS	TSS	VSS	TP	TN	COD	Cu	Pb	Zn	TDS	TSS	VSS	TP	TN	COD	Cu	Pb	Zn
10/5/2012	514	252	64	0.97	4.7	98	0.030	0.016	0.162	536	240	31	0.62	2.6	66	0.033	0.011	0.114
10/23/2012	481	151	36	0.42	0.3	38	0.013	0.006	0.155	561	78	21	0.37	0.3	26	0.015	0.006	0.162
11/11/2012	307	278	38	0.68	3.0	66	0.018	0.011	0.159	824	154	50	0.50	3.3	57	0.016	0.008	0.124
1/29/2013	384	4,160	265	1.83	5.4	702	0.082	0.143	0.676	410	3,860	287	2.63	7.1	726	0.097	0.147	0.767
3/17/2013	908	178	32	0.25	1.8	48	0.010	0.006	0.118	1,030	110	30	0.38	3.1	45	0.013	0.005	0.257
4/10/2013	669	2,840	275	1.42	6.7	375	0.053	0.085	0.449	992	1,140	210	1.48	4.2	130	0.047	0.044	0.389
4/17/2013	161	1,540	116	0.88	2.7	91	0.036	0.049	0.316	249	1,110	84	0.83	4.0	89	0.037	0.046	0.314
4/23/2013	505	150	28	0.31	1.5	32	0.010	0.009	0.079	565	104	10	0.40	1.5	26	0.011	0.009	0.081
7/29/2013	642	172	32	0.23	1.3	43	0.011	0.008	0.111	681	81	17	0.15	1.3	27	0.009	0.005	0.075
8/2/2013	144	944	84	0.58	0.3	71	0.020	0.026	0.214	174	968	68	0.63	2.2	90	0.029	0.032	0.324
8/12/2013	333	866	63	0.43	1.8	155	0.019	0.022	0.194	358	786	55	0.54	2.8	156	0.026	0.026	0.264
9/19/2013	620	400	32	0.26	1.8	48	0.020	0.015	0.245	690	780	60	0.47	3.3	61	0.035	0.027	0.478
9/28/2013	554	338	22	0.37	1.5	114	0.018	0.015	0.173	644	328	36	0.45	1.6	115	0.033	0.023	0.400
10/30/2013	570	584	88	0.48	1.5	167	0.016	0.019	0.167	574	408	80	0.44	1.5	134	0.019	0.017	0.210
3/27/2014	343	3,140	240	1.31	5.2	572	0.048	0.078	0.499	389	1,190	108	1.26	5.3	529	0.045	0.065	0.488
7/8/2014	442	638	46	0.45	3.1	78	0.027	0.028	0.356	426	400	24	0.37	3.1	51	0.019	0.021	0.288
8/16/2014	485	253	29	0.22	2.7	47	0.016	0.012	0.227	794	23	5	0.15	1.6	25	0.005	0.003	0.035
10/9/2014	132	652	55	0.33	2.4	123	0.014	0.017	0.186	205	163	13	0.17	0.6	31	0.003	0.008	0.068
11/24/2014	584	146	30	0.35	2.6	26	0.003	0.003	0.065	950	26	8	0.18	1.9	22	0.003	0.003	0.029
12/6/2014	437	270	24	0.23	1.7	101	0.008	0.011	0.099	555	109	20	0.14	1.9	25	0.003	0.003	0.041

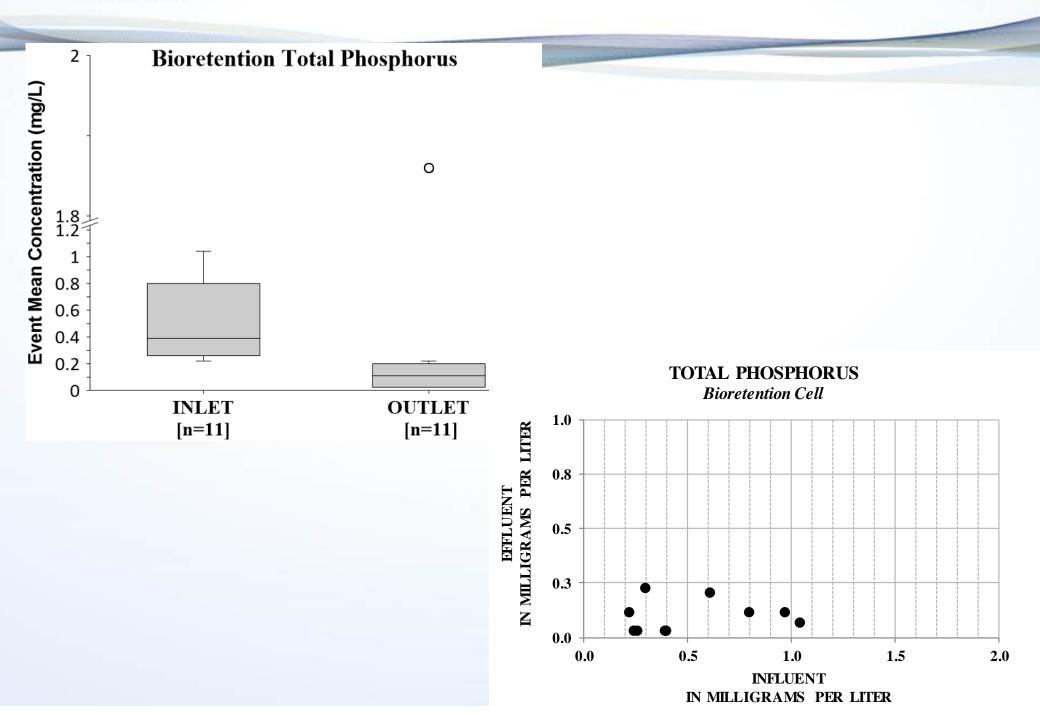


Results – Step Pool

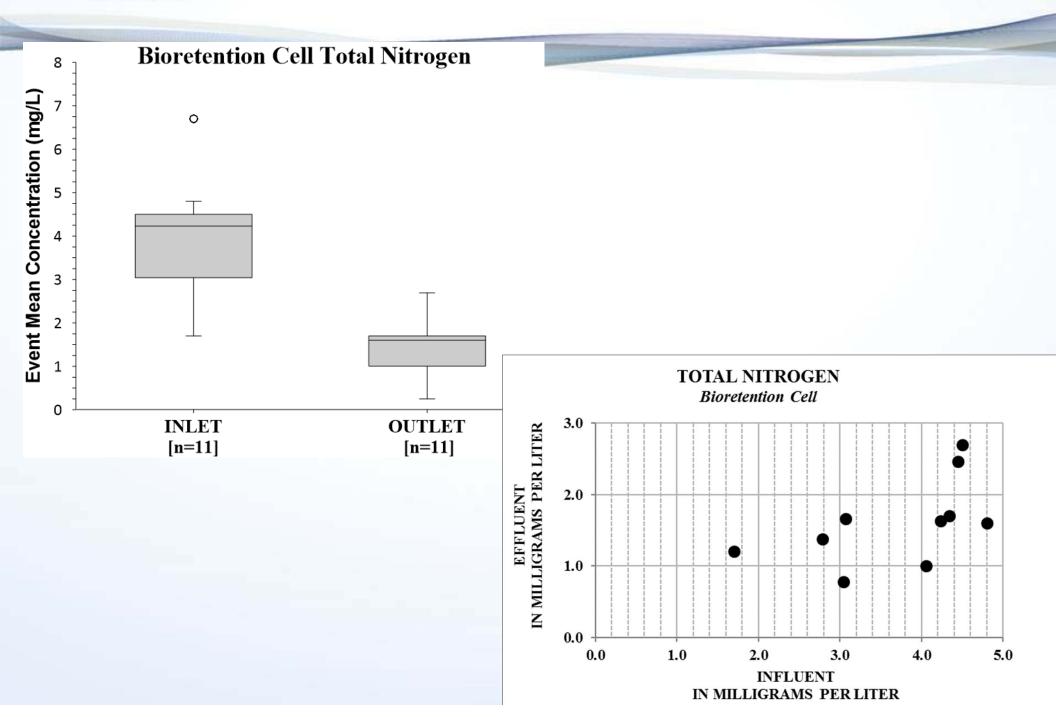

				100000000000000000000000000000000000000						
	Antecedant Precipitation				Inlet		Outlet			
Event Date	Dry Period (days)	Total (in.)	Max Intensity (in./hr.)	Duration (hrs.)	Mean Flow (cfs)	Peak Flow (cfs)	Total Volume (cf)	Mean Flow	Peak Flow (cfs)	Total Volume (cf)
10/5/2012	7.0	0.44	0.48	6.4	0.11	0.59	7,402	0.12	0.54	7,977
10/23/2012	4.1	0.57	0.48	7.6	0.70	1.22	32,756	0.71	1.24	33,287
11/11/2012	6.5	0.97	0.48	6.9	0.41	1.20	13,040	0.45	1.38	14,168
1/29/2013	2.2	0.7	3.36	0.7	0.65	3.86	9,731	0.82	4.36	12,852
3/17/2013	6.5	0.32	0.24	5.0	0.18	0.33	4,307	0.19	0.33	4,896
4/10/2013	3.2	0.42	2.28	3.8	0.26	2.62	4,879	0.29	2.05	5,511
4/17/2013	1.7	0.46	2.16	0.5	0.98	4.19	9,677	1.18	5.97	11,705
4/23/2013	5.2	0.4	0.36	4.0	0.67	1.13	11,913	0.69	1.24	12,483
7/29/2013	3.8	0.25	0.96	1.1	0.36	1.19	4,582	0.36	0.99	4,657
8/2/2013	4.6	1.1	2.88	2.6	2.14	5.61	14,128	2.58	6.88	17,835
8/12/2013	6.4	0.71	2.16	1.7	1.32	4.54	13,037	1.44	5.34	15,563
9/19/2013	2.9	0.85	3.36	2.3	1.17	4.32	10,218	1.42	5.46	11,908
9/28/2013	8.5	0.46	1.68	1.1	0.89	2.52	5,086	0.94	3.03	5,908
10/30/2013	1.1	0.28	0.6	2.2	0.43	1.16	6,207	0.46	1.21	6,649
3/27/2014	0.7	0.41	3.84	1.6	0.53	4.65	4,309	0.55	4.95	5,316
7/8/2014	9.1	1.37	4.2	3.8	1.63	5.65	13,176	2.16	8.82	16,880
8/16/2014	8.6	1.29	1.56	16.3	0.77	3.35	49,142	0.81	5.19	52,097
10/9/2014	6.1	1.67	2.4	3.1	4.01	5.20	32,514	2.01	9.25	41,703
11/24/2014	19.3	0.69	0.6	21.2	0.10	0.63	14,097	0.11	0.58	15,857
12/6/2014	8.4	0.97	0.24	18.0	0.27	0.75	25,131	0.33	0.89	29,703

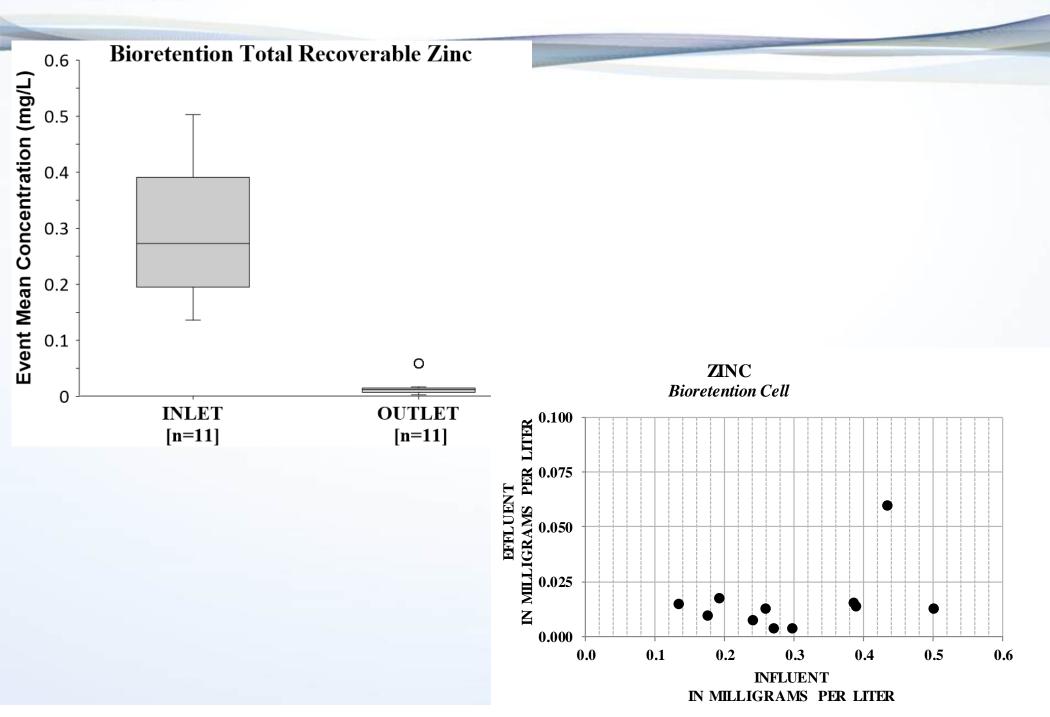
Flow Reduction

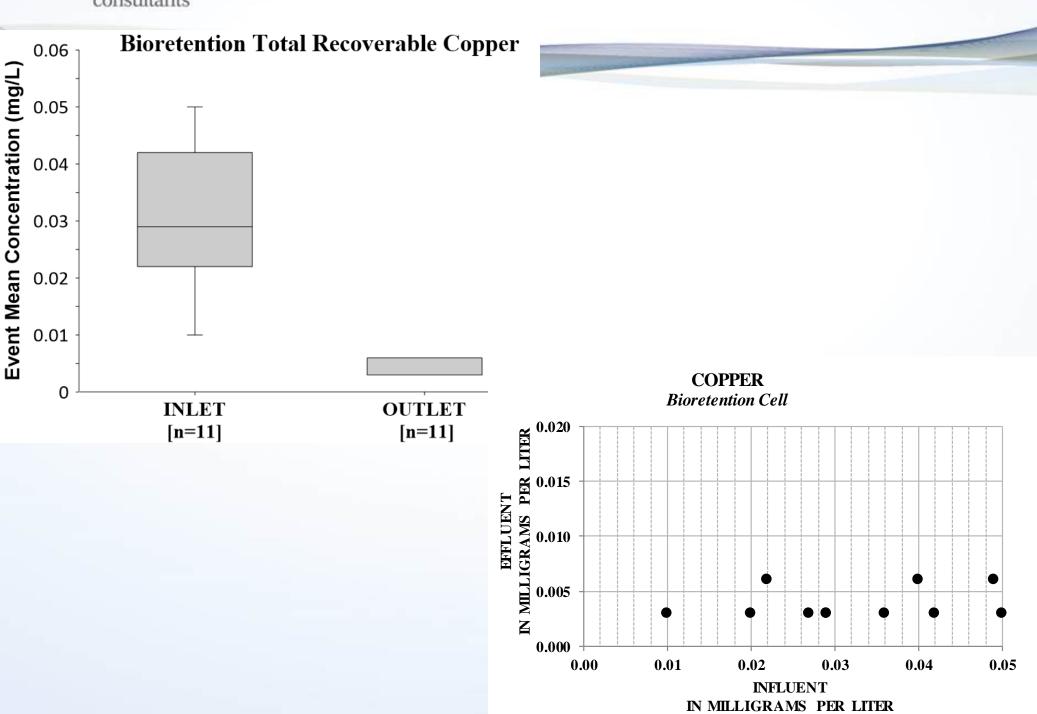


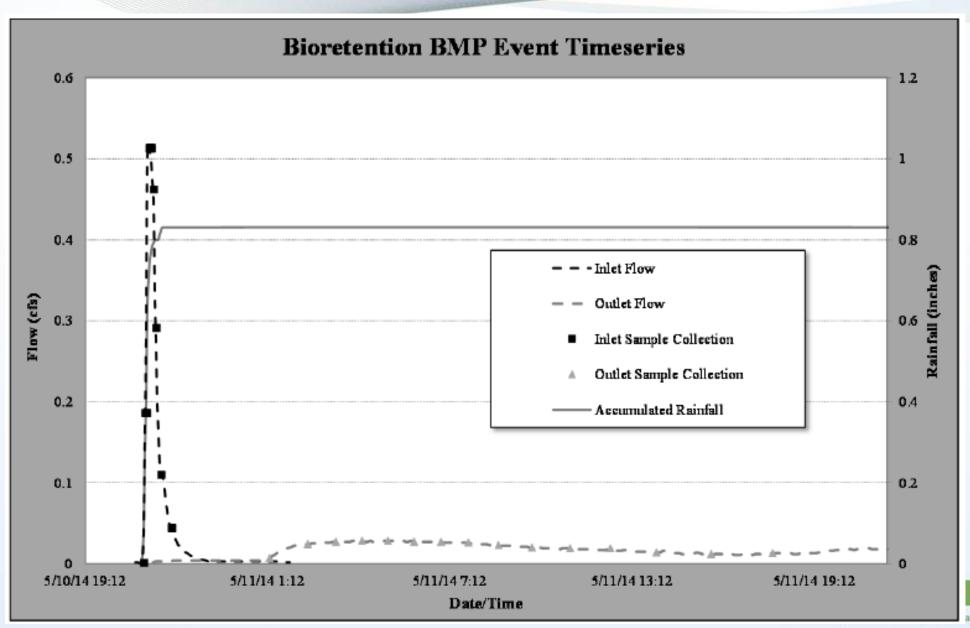


TOTAL SUSPENDED SOLIDS


Bioretention Cell







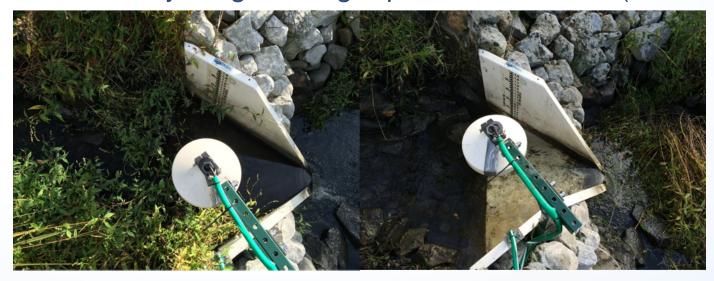
	Antecedant		Precipitation		-	Inlet			Outlet	
Event Date	Dry Period (days)	Total (in.)	Max Intensity (in./hr.)	Duration (hrs.)	Mean Flow(cfs)	Peak Flow (cfs)	Total Volume (cf)	Mean Flow (cfs)	Peak Flow (cfs)	Total Volume (cf)
12/15/2012	11.9	0.56	0.96	4.3	0.071	0.57	1,677	0.013	0.020	2,274
1/11/2013	10.3	0.19	0.36	13.5	0.002	0.04	205	0.002	0.004	314
7/30/2013	3.8	0.23	1.08	1.2	0.045	0.17	381	0.001	0.008	240
4/24/2014	11.7	0.4	0.84	2.0	0.033	0.20	971	0.007	0.017	1,107
5/10/2014	2.9	0.83	4.44	0.8	0.048	0.51	812	0.016	0.028	2,071
8/16/2014	8.6	1.14	1.08	9.3	0.059	0.67	2,859	0.018	0.050	3,239
8/29/2014	12.9	0.29	1.32	0.3	0.156	0.56	516	0.008	0.012	545
9/6/2014	3.6	0.56	0.72	6.1	0.047	0.49	1,007	0.010	0.015	1,328
11/24/2014	19.3	0.67	0.12	23.8	0.017	0.21	1,324	0.013	0.024	1,549
12/5/2014	11.2	0.48	0.12	10.6	0.032	0.12	1,143	0.011	***	1,299
1/4/2015	12.1	0.38	0.12	24.1	0.010	0.11	818	0.012	0.008	941

Flow Reduction

Annual Average Removals

- Monte Carlo simulation was used
- Predicted annual average pollutant reductions

Grissum Building BMP	TSS Load Reduction (tons/yr)	TP Load Reduction (lbs/yr)	TN Load Reduction (lbs/yr)
Step pool	25	24	79
Bioretention	40	399	78



Lessons Learned

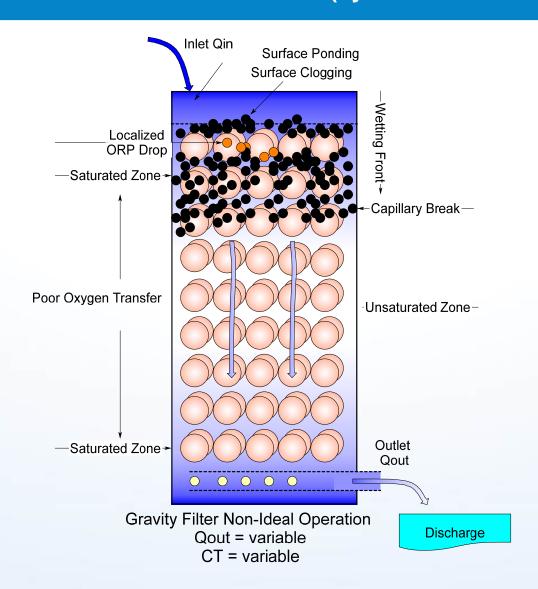
- Step Pool Conveyance System
 - Mature vegetation enhances pollutant removal efficiency

Routine maintenance is key for gathering representative data (see

images

- Bioretention
 - Establish a robust maintenance program prior to implementation
 - Proper outlet flow monitoring design is important must consider accurately measuring the entire range of flows (infiltrated vs overflow)
 - Mature vegetation enhances pollutant removal efficiency

Bioretention - Maintenance



Geosyntec.com

Bioretention - Design

Gravity Flow Media Filter Schematic (hydraulic failure mechanisms)

Bioretention – Enhanced Design

2) Media Bed Filling 1) Empty Media Bed **Emergency Overflow** Inlet Qin Inlet Overflow **Primary Outlet Primary Outlet** Control Qp Dispersed Clogging \bigcirc 0 Non-Resticitive Media Free Draining Wetting Front Low-Flow Outlet Control Low-Flow O O O O • • • • Outlet QI

Discharge

Geosyntec.com

Discharge