

Living Shoreline at Leesylvania State Park

Thomas Dombrowski – Environmental Engineer Prince William County Dept. of Public Works, Environmental Services

What is a Living Shoreline

■ Living shorelines are a relatively new approach for addressing shoreline erosion and creating protecting marsh areas. Unlike traditional structures such as bulkheads or seawalls that can worsen erosion to adjacent unprotected properties.

Partnership was formed to facilitate the construction of the first Living Shoreline in Northern Virginia

- NVRC Coordination and management
- Prince William County Department of Public Works Permitting and Technical Assistance
- DCR, Leesylvania State Park Site Manager
- VIMS design and oversight

Site Selection

LEESYLVANIA STATE PARK

LIVING SHORELINES PROJECT

Project Objectives

- Stabilize 800 feet of shoreline
- Enhance 22,000 sq. ft of riparian buffer habitat
- Restore 25,000 sq. ft of intertidal marsh and beach habitat
- Protect park assets from storms
- Filter upland runoff

Design done by Scott Hardaway of VIMS. The Hybrid Approach of Sills and created wetlands.

Bulkheads and hard stabilization can sever the natural processes& connections between uplands and aquatic areas.

Construction and Planting

Project was constructed with no tax dollars. Funded by various Grants and PWC tidal mitigation Fund

TMDL Protocol 1. Prevented Sediment

- Step 1 Estimate shoreline sediment erosion rate= 1foot/year
- Step 2 Convert shoreline erosion to nutrient loading rate V(volume) = L (length) E (erosion rate ft./yr.) B (bank height)
 800 x 1.0 x 2= 1600 ft3/yr. Sediment
- Default values:
- Bulk density = 93.6 lb./ft3 x 1600= 149,760 lbs. sediment /yr. /2000= 74.88 tons sediment/year
- 0.57 pounds TN/ton sediment x 74.88 = 42lbs. /year
- 0.41 pounds TP/ton sediment x 74.88 = 30.70lbs./year
- Step 3 Estimate shoreline restoration efficiency Used 100% effectiveness Site specific sampling can be used

We will most likely conduct on site sampling

Areas where samples will be collected for Protocol 1.

Protocol 2: Denitrification

- 25,000 sq. feet of wetland enhancement and restoration=0.57 acres x default value of 85lb TN /acre/year= 48.7 lb./yr.
- Default values are based on a literature review of 18 studies

Protocol 3:SEDIMENTATION

- **TP:0.57** acres x 5.29 TP/acre /yr.
 - =9.522lbs.TP/yr.
- ■TSS:0.57 acres x 6,959lbs.TSS/acre/yr.
 - = 3,966.63lbs.TSS/acre/yr.

Default values are all based on Literature review of 22 studies

Protocol 4: Marsh Redfield Ratio

- Can only be used in the first year after construction
- 0.57 acres x 205 lbs. TN/yr.=116.85lbs/yr.
- Tidal marsh vegetation ties up TN and TP that would otherwise enter the Bay
- Summarized studies in the Bay and other relevant areas that quantified marsh Redfield ratio and aboveground and belowground production
- Literature review over 50 studies, summarized each study took the mean aboveground and belowground biomass, and converted to pounds TN/acre/yr. and TP/acre/yr.

A little Recognition from the GOV

Thank You!

|15|