

Leveraging Historical BMP Data To Meet Present-Day Reporting Requirements

Tim Schmitt and Paul Tomasula, LimnoTech CWEA Spring Stormwater Seminar May 18, 2017

Outline

- Project overview
- Regulatory background
- Data cleanup/management challenges and solution
- Key data updates
 - $-P_{E}$
 - Treatment trains
 - Overlapping Permits and BMPs

Project Overview

- Assist Anne Arundel County in updating historic Stormwater BMP database
 - Review the existing stormwater BMP database records;
 - Research, correct, and populate the required database fields for existing records;
 - As necessary, create new records for existing legacy BMPs; and
 - Develop GIS BMP points and drainage areas.
- Awarded Spring 2016

Regulatory Background

- MDE requires restoration plans as part of all MS4 permits
 - Helps address TMDL WLAs
- Two components of restoration plans:
 - Restoration of 20% impervious surface area that has little or no stormwater management
 - Chesapeake Bay TMDL
 - Implementation of BMPs to reduce loads to meet WLAs
 - All other "local" TMDLs

BMP Tracking to Meet Regulatory Requirements

- Verify existing BMPs
- Changes in design requirements over time yield different credits
- Improved tracking for maintenance needs
- Historical data cleanup allows adjustment of impervious area baseline

Reviewing and Updating BMP Records

- Review scanned and physical plans
- Update existing information in DB
 - Type of development
 - BMP type
 - Drainage area
 - Rainfall depth treated
 - Water quality volume treated
 - Milestone dates
- Determine location of BMPs
- Delineate drainage areas

Data Cleanup Challenges

- Changes in design requirements/credits over time
 - Move from regional SW management to Environmental Site Design
 - Change from controlling runoff from 1" storm to mimicking conditions of wooded site
- Lack of documentation in plans
- MDE vs. local data needs

Utilized Intuit QuickBase

- Allows multiple users
 - No locks
- On cloud server, accessible through web browser
- Easy to track progress and share results with client
- Flexibility in reporting
 - County needs
 - MDE requirements

P_E Data

- MDE requires P_E (depth retained) values for BMPs or POIs as part of geodatabase
- Not always readily available
- Methodology to approximate P_E for each BMP based on best-available data

$$P_{E} \ achieved = \frac{Credited \ Volume}{Runoff \ Coefficient \ * Total \ Drainage \ Area}$$

P_E Data Hierarchies

- Example: Total drainage area for BMP not documented on plans
- Use logic to substitute best possible data
- All substitution methods recorded in database

$$P_{E} \ achieved = \frac{Credited \ Volume}{Runoff \ Coefficient \ * Total \ Drainage \ Area}$$

BMP Treatment Trains

 Goal: account for upstream BMP's impact on downstream BMP

 Establish relationship between treatment train records

Continued Development and Overlapping BMPs

- Sites develop over time
 - Grading permits on top of each other
- Need to capture present <u>and</u> historic site conditions
 - Original/"Historic" conditions in initial permit
 - Modifications to existing conditions may not be shown in "modifying" permit

Summary

- Updating stormwater BMP data to meet regulatory requirements
 - Multiple data and data management challenges
- Intuit QuickBase solution
 - Logistics
 - Flexibility
- Data issues resolved
 - Some missing critical data (PE)
 - Tracking treatment trains
 - Overlapping drainage areas
 - Historical and current conditions