

We Make a Difference

What Makes a BMP Successful?

Lessons Learned in Stormwater Best Management Practice (BMP) Assessment and Design

May 18, 2017 Libby Casavant and Lindsey Kellar

Presentation Outline

- 1. Background
 - 100 conceptual designs for BMPs
 - MS4 Requirements for the Chesapeake Bay TMDL- Second Permit Cycle
- 2. Our Process to Improve BMP Success
 - Site Selection
 - Design Phase
- 3. Select Encountered Problems and Solutions

Michael Baker INTERNATIONAL Project Location:

Chesapeake Bay TMDL

5% 60% PERMIT CYCLE #2 2018 -2023 PERMIT CYCLE #1 2013 - 2018 PERMIT CYCLE #3 BASELINE **ESTABLISHED** (TN, TP, TSS) **CLEAR** TARGET (TN, TP, TSS)

Michael Baker

INTERNATIONAL

Our Process to Improve BMP Success

Implementation

We Make a Difference

Field Investigations are Critical

 Out of date GIS information (building demolition, new utilities, etc.)

Site Selection

- Interior vs. Exterior Downspouts
- Collect depths from the surrounding storm sewer inlets and manholes. Identify potential sites to tie in underdrains and overflow structures
- Determining flow direction (especially in paved areas)

Check the Site for Fatal Flaws

 Cultural or Historically Significant Sites

Site Selection

- Flooding History that would negatively affect certain types of BMP
- Unavoidable and significant utility conflicts

Example of proposed BMP with fatal utility conflicts

Meet with Stakeholders

• Planners

Michael Baker

- Public Works Staff
- Continue to communicate on new ideas, constraints, or maintenance requirements.

Site Selection

Finally- Rank the potential BMPs

• Yes/No/Maybe

Site Selection

ProjectID	Facility	Proposed BMP	Result Based on Field Visit	Yes/No/ Maybe	Explanation for N/P	Severity 1=low 3=high	Planners?
SM-002A-2	SCA	Rain Garden	Try to avoid trees, disconnect gutters. Could also try to bring parking lot (north) RO to rain garden via a valley gutter. Potential utility issues (electric, thermal and sewer are in the area on N side of building.)	Y			x
SM-002A-3	SCA	Wet Swale	This is apparently a BMP surrounding another BMP. Also, there doesn't seem to be enough room for it.	N	limited returns		
SM-002A-3 Alternative	SCA	Rain Garden	Alternative to create small rain garden to treat parking lot runoff then tie into existing BMP	Μ		1	
SM-002A-5	SCA	structed wetl	Shape could be altered based on what the final plans are for these ballfields. May or may not need to be accessible to pedestrians/ sports spectators	Y			

Maximize Drainage Area

Design Phase

Conveyance swales? Disconnect downspouts? Valley Gutters? (Check slope on all of these to see if feasible.)

Space Available vs Space Needed

Surface Area Determined with VRRM (Virginia Runoff Reduction Method)

Land Use Type	Drainage Area	Rv	Treatment Volume	Storage Depth ²	Surface Area Required
	[SF]		[CF]	[FT]	[SF]
Impervious	9,952	0.95	788	1.275	618
Grass	13,886	0.2	231	1.275	182
Sand	0	0.6	0	1.275	0
BMP Footprint (Runoff Reduction) ¹	809	0	0	1.275	0
TOTAL =	24,647		1,019		799

¹ Assume that the filter media can store all rain falling within the footprint of the BMP itself (from top of berm down), therefore the runoff coefficient for the BMP component of the drainage area is 0.

² The storage depth was calculated using the ponding depth as well as the volume of the voids in the filter media and gravel layers of the BMP.

Remember setbacks from buildings and utilities!

Michael Baker

Design Phase

Choose a practice -start with highest removal and work down from there as you check:

• Online or offline?

Michael Baker

• Water Table (infiltration vs. wet practice)

Design Phase

- Soils? (level 1 and level 2 in Virginia)
- Tie In (if needed)
- Flowpath length, geometry
- Pretreatment requirements

Diagram Credit: Virginia BMP Clearinghouse

Summarized List of Practices	Virginia BMP Established	Clearinghouse Efficiencies	Chesapeake Bay Program Established TSS Efficiency		
	TN	ТР	TSS		
Grass Channel	28%	23%	50%		
Permeable Pavement 1	59%	59%	55%		
Permeable Pavement 2	81%	81%	55%		
Infiltration 1	57%	63%	95%		
Infiltration 2	92%	93%	95%		
Bioretention 1	64%	55%	55%		
Bioretention 2	90%	90%	55%		
Urban Bioretention	64%	55%	55%		
Dry Swale 1	55%	52%	55%		
Dry Swale 2	74%	76%	55%		
Wet Swale 1	25%	20%	50%		
Wet Swale 2	35%	40%	50%		
Filtering Practice 1	30%	60%	80%		
Filtering Practice 2	45%	65%	80%		
Constructed Wetland 1	25%	50%	60%		
Constructed Wetland 2	55%	75%	60%		
Wet Pond 1	20%	45%	60%		
Wet Pond 2	30%	65%	60%		
Extended Detention Pond 1	10%	15%	60%		
Extended Detention Pond 2	24%	31%	60%		

A Few Problems and Solutions

Land Constraints

Use storage depth calculation to minimize the surface area needed

	Example	Void Ratio	Storage Depth With Voids	Storage Depth Without Voids		
Ponding Depth	0.5 feet	1.00				
Gravel Depth	1.0 feet	0.40	1.275	0.5		
Biosoil Depth	1.5 feet	0.25				
			Surface Area	Surface Area		
			819 sq. ft.	2,088 sq. ft.		

Limitations of Existing Storm System and High Water Tables

 Accurately account for the total depth. If 1' of clearance from the water table is unavailable, consider level one or wet practice

12" pipe detailed cross section

6" pipe detailed cross section

*Limitations of Using Wet Practices

(the solution to one problem can be the cause of another)

- Generally lower pollutant reduction rates
- Bird Air Strike Hazard (BASH) complications near airports or flight paths

Michael Baker

Coastal/Tidal Influences and Sea Level Rise

- Larger Pipes and Forebays
- Design Inland (LID)
- Plant Selection (salt tolerant, native species)

Diagram Credit: mass.gov/eea, Climate Change Stormwater BMPs Factsheet

Cost

• Try to maximize the size or group smaller projects together (for retrofits) to minimize mobilization cost

Design Costs					
Field survey and basemap prep	DAY	1	\$	1,500	\$ 1,500
Infiltration test	EA	1	\$	450	\$ 450
Geotechnical Evaluation	EA	1	\$	3,500	\$ 3,500
Engineering (Max of 10% Construction or \$20,000)	LS	1	\$	20,000	\$ 20,000
Permitting	LS	1	\$	3,000	\$ 3,000
	Design Cost Subtotal			\$ 28,450	

Michael Baker

When Traditional BMP Retrofits Are Not Possible, or Are Not Enough

- Non-Traditional BMPs
 - Floating Islands
 - Shoreline Restoration
 - Stream Restoration

- Non-Structural BMPs
 - Street Sweeping
 - Filter Strips
 - Land Use Conversion

Highlights for Improving BMP Success

Stakeholder Coordination

Avoid Complications

- Utilities
- BASH
- BMP Total Depth vs. Water Table
- Existing Topography for Overland Conveyance

Maximize Efficiency

- Maximize Drainage Area
- BMP Type
- Appropriate Sizing
- Group Small Projects Together

Thank you!

Any questions or ideas?