

Resource Recovery: Biosolids to Biogas at the Piscataway WRRF

April 2020

Agenda

- Bio-Energy Project Objectives and Drivers
- Bio-Energy Plant Overview
- Piscataway Renewable Gas Production
- Piscataway and Montgomery County Gas Reqmts
- Projected Bio-Energy Initial Operations
- Renewable Fuel Standard Program and RIN Market
- Projected Cost and Revenue Comparison
- Questions

Existing Biosolids Management Practices

- Individual handling at 5 WSSC WRRF (WWTP)
- Class B land application
 - Meet EPA requirements
 - Land sites in VA
- Western Branch
 - Landfills in Virginia

Drivers for Change

- Increased regulations will lead to higher costs for Class B disposal
- Fewer restrictions on more highly treated Class A biosolids (better product)
- Reduced quantity of biosolids to be land applied
- Recovered energy (resource) during the process

Bio-Energy Project-Objectives

- Save rate payer dollars through reduced operating costs
- Minimize the quantity of biosolids material
- Develop Class A (pathogen-free) biosolids material
- Maximize return on investment and energy recovery from biosolids, fats, oils and grease
- Reduce greenhouse gas emissions
- Improve power reliability
- Reduce nutrient loads to Chesapeake Bay

Renewable Biogas - Piscataway

- Biogas production: ~12 MMBtu-LHV/hr in mid-2023
- Site consumption: ~26 MMBtu-LHV/hr, also in mid-2023
- Biogas production qualifies for renewable fuel credit (RIN) if delivered for transportation use
- WGL constructing new gas service that allows Piscataway to sell biogas to other system users
- Any licensed energy supplier can deliver Piscataway renewable gas to any customer

WSSC Piscataway Bioenergy Program Potential NG Use and rNG Injection Quantities

Projected Initial Operation

Biogas and Natural Gas Delivery – Montgomery County & WSSC

Renewable Fuel Standard (RFS) Program Structure

- Created under the Energy Policy Act of 2005 (EPAct)
- Amended the Clean Air Act (CAA)
- Energy Independence and Security Act of 2007 (EISA) further amended the CAA by expanding RFS program
- EPA implements the program in consultation with the US Department of Agriculture and the Department of Energy

Pathways II Improved on Pathways I

- Pathways I originally classified Biogas (from Landfills, sewage and waste treatment plants, manure digesters) as for D5 (Advanced) RINs
- RFS Pathways II was published on July 18, 2014
- Pathways II added Pathway Q that provided D3-RIN (cellulosic) designation for any:
 - "Renewable Compressed Natural Gas, Renewable Liquefied Natural Gas, Renewable Electricity"
 - produced from "Biogas from landfills, municipal wastewater treatment facility digesters, agricultural digesters, and separated MSW digesters; and biogas from the cellulosic components of biomass processed in other waste digesters."

Fuel Nesting Summary for RFS

Conventional renewable fuel (D6)

Example feedstock: Corn starch Required lifecycle GHG reduction: 20% or more

Advanced biofuel (D5)

Example feedstocks: Sugarcane, biobutanol, bionaphta Required lifecycle GHG reduction: 50% or more

Cellulosic biofuel (D3)

Example feedstocks: Corn stover, wood chips, miscanthus, biogas Required lifecycle GHG reduction: 60% or more

Biomass-based diesel (D4)

Each D3 or D4 is also counted as a D5

And each D5 is also counted as a D6

Example feedstocks: Soybean oil, canola oil, waste oil, animal fats Required lifecycle GHG reduction: 50% or more

Renewable Fuel Volume Obligations (RVO)

Congressional Volume Target for Renewable Fuel

Required Volumes of RINs

Requirements for Biodiesel beyond 2013 and other renewable fuels beyond 2022 will be determined by EPA rulemaking but must be greater or equal to the last numeric quantity.

Proposed, Final, and Originally-Legislated D3/D5/D6 RIN Volumes (in millions); with Downturn Starting in 2018

RIN Class		Volume Basis	2012	2013	2014	2015	2016	2017	2018	2019	2020
D3	sic	Proposed	3 to 16	14	8 to 30	none	none	312	238	381	540
	Iulo	Final	0	6	33	123	230	311	288	418	590
	Cel	Legislated	500	1,000	1,750	3,000	4,250	5,500	7,000	8,500	10,500
D5	ced	Proposed	2,000	2,750	2,200 to 2,510	none	none	4,000	4,240	4,880	5,040
	vano	Final	2,000	2,750	2,670	2,880	3,610	4,280	4,290	4,920	5,090
	Ρq	Legislated	2,000	2,750	3,750	5,500	7,250	9,000	11,000	16,000	15,000
D6	able	Proposed	15,200	16,550	15,000 to 15,500	none	none	18,800	19,240	19,880	20,040
	lota iewa	Final	15,200	16,550	16,280	16,930	18,110	19,280	19,290	19,920	20,090
	Ren	Legislated	15,200	16,550	18,150	20,500	22,250	24,000	26,000	28,000	30,000

Summary Table from Multiple Proposed and Final EPA RFS Rules on EPA Website at:

https://www.epa.gov/renewable-fuel-standard-program/regulations-and-volume-standards-renewable-fuel-standards (Compiled on 9-15-2019)

What Happens After 2022?

- The statutorily-prescribed phase-in period ends in 2012 for biomassbased diesel and in 2022 for cellulosic biofuel, advanced biofuel, and total renewable fuel.
- Beyond these years, EISA requires EPA to determine the applicable volumes.
- However, the statute requires that the biomass-based diesel volume in 2013 and beyond must be no less than 1.0 billion gallons, and that advanced biofuels (which include Cellulosic) in 2023 and beyond must represent at a minimum the same percentage of total renewable fuel as it does in 2022.

Value of RINS (contrast between D3 and D5)

• D3s have historically been worth 2 to 4 times D5s

Comparison of Biogas CHP and NG CHP + rNG Export: Operating Parameters

Description	Units	Biogas CHP	NG CHP + rNG Export
Biogas Production	MMBtu-LHV/hr	12	12
Biogas Treatment Recovery	% of Biogas	99%	98%
Renewable Fuel	MMBtu-LHV/hr	11.9	11.8
D3 (Cellulosic) RIN Production	D3-RINs/Day		3,665*
NG LHV Purchases	MMBtu-LHV/hr	4.6	26.0
NG HHV Purchases	MMBtu-HHV/hr	5.1	28.9
Net Electric Efficiency	% of Fuel	38.2%	38.2%
Net Power Production	MW, avg	1.33	2.62

* D3-RINs/Day =<u>MMBtu-LHV/hr. x 24</u> 77000 Btu/RIN

Comparison of Biogas CHP and NG CHP + rNG Export: Unit Costs, Revenues, and Savings

Description	Units	Biogas CHP	NG CHP + rNG Export
Net RNG Sale (energy rev. & injection cost)	\$/MMBtu-HHV		\$2.10
Net NG Purchase (energy & delivery costs)	\$/MMbtu-HHV	-\$4.00	-\$4.00
Net Electric Savings (energy savings, REC rev., & CHP O&M cost	\$/kWh	\$.105	\$.09
Full D3-RIN Value	\$/D3-RIN		\$1.00
RIN Revenue Recovery	% Full Value		85%

Comparison of Biogas CHP and NG CHP + rNG Export: Annual Savings or Revenues (>0) and Costs (<0)

Description	Biogas CHP	NG CHP + rNG Export	
Net RIN Revenue	\$0	\$1,140,000	
Net RNG Revenue	\$0	\$240,000	
Net NG Costs	-\$180,000	-\$1,010,000	
Net Electric Savings	\$1,220,000	\$2,060,000	
Total Annual Savings	\$1,040,000	\$2,430,000	
		γ]	

\$1,390,000

Questions?

