Receiving Streambank Regeneration Through Upland Hydrologic Restoration

> CWEA Webinar August 10, 2017 Martin B. Covington, III, PE Byron Madigan

NPDES & TMDL Compliance

Modified, Enhanced, and Enlarged Sand Filters as Retrofits of Existing Stormwater Management Ponds

As of 2016

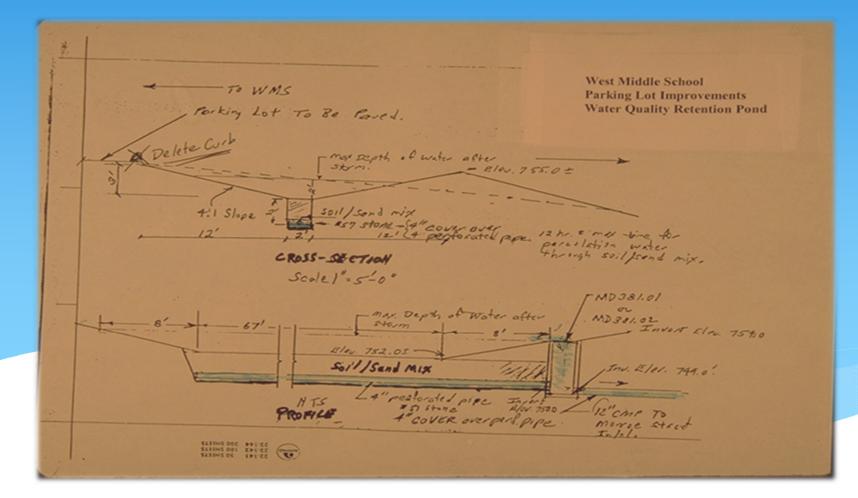
25 Carroll County Modified Sand Filters

FACILITY	DRAINAGE AREA	IMPERVIOUS AREA	INCHES OF TREATMENT	TN REDUCTION (LBS/YEAR)	TP REDUCTION (LBS/YEAR)	TSS REDUCTION (TONS/YEAR)
Marriott Wood I Facility #1	3.00	0.56		11.52	1.04	0.28
Hickory Ridge	23.75	4.80	3.80	116.80	10.73	2.92
Bateman SWM Pond	47.25	7.40	6.80	228.31	19.56	5.14
Marriott Wood I Facility #2	7.12	2.04	4.63	36.15	3.72	1.07
Marriott Wood II	11.62	1.92	6.19	56.34	4.89	1.30
Elderwood Village	15.28	4.94	2.22	76.77	8.32	2.38
Collins Estate	32.68	6.36	2.99	160.26	14.56	3.94
Oklahoma II Foothills	23.72	6.06	2.36	102.04	9.99	2.81
Oklahoma Phase I	24.44	7.27	3.99	124.60	12.98	3.74
Edgewood	38.00	12.12	2.70	195.27	20.86	6.07
Upper Patapsco Phase I -Naganna Pond	24.50	10.00	2.70	130.03	15.27	4.60
High Point	9.40	1.82	2.58	46.08	4.18	1.13
Westminster High School	115.00	42.12	3.38	601.25	67.66	20.09
Brimfield	34.69	17.23	4.12	189.93	24.18	7.48
Upper Patapsco Phase II -Hoff Pond	77.30	2.98	52.57	356.27	24.42	5.54
Heritage Heights	21.40	4.10	6.96	104.82	9.48	2.56
Clipper Hills - Gardenia	33.19	11.08	3.13	171.49	18.49	5.46
Clipper Hills - Hilltop	43.82	13.40	3.47	224.09	23.40	6.82
Wilda Drive	6.75	1.60		26.43	2.56	0.70
Diamond Hills Section 5	51.80	16.26	2.16	259.37	27.37	7.91
Carrolltowne 2A Gemini Drive	87.73	34.43	2.56	463.02	53.12	16.05
Benjamin's Claim	47.10	15.78	2.31	237.67	26.09	7.58
Eldersburg Estates 3-5	34.90	8.16		136.50	13.15	3.61
Benjamin's Claim Basin B	1.33	0.55		5.56	0.66	0.20
Braddock Manor West	49.30	7.65		187.07	16.04	4.15
Totals	865.00	240.00		4248.00	433.00	124.00

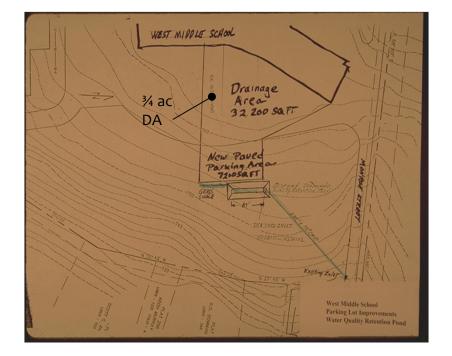
History Began in 2000

<u>Modified Sand Filters</u> (or the Herring/Frock Method)

- Myron Frock (who had worked with S.C.S. for many years) pointed out that grassed waterways used in agriculture to prevent soil erosion in fields also proved remarkably effective at filtering the water, particularly when underlain with drain "tile."
- The typical agricultural waterway consists of a perforated HDPE pipe surrounded by 4-inches to 6-inches of stone and overlain by sod.



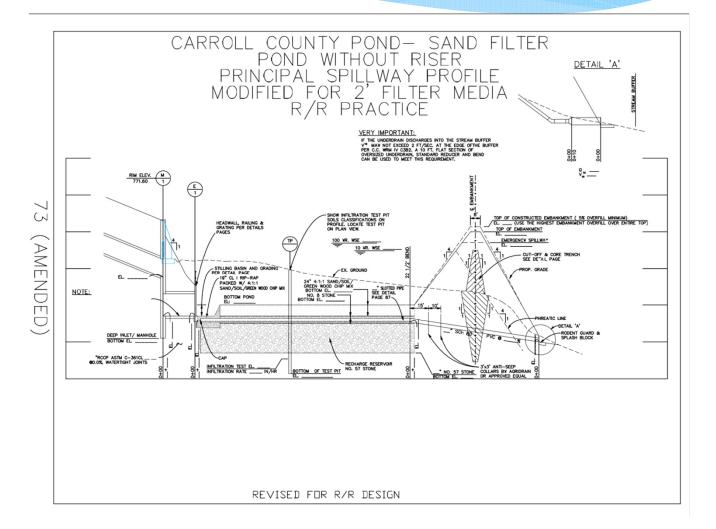
To modify the agricultural waterway for stormwater treatment we:

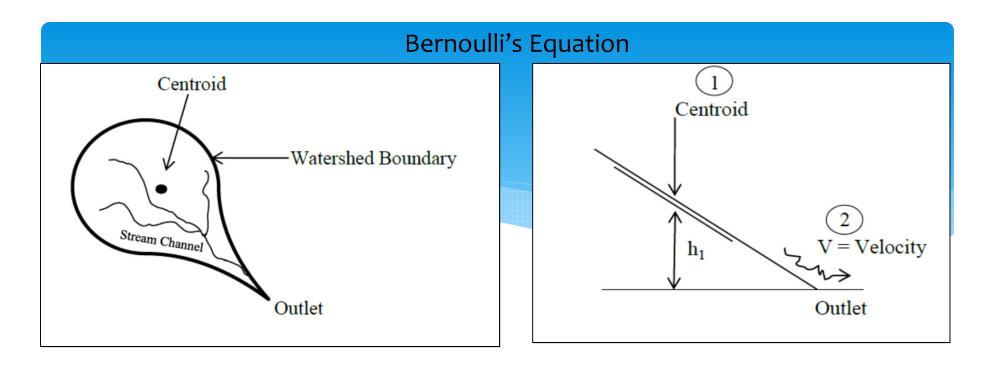

- added 2 feet of stone below the underdrain
 - This creates an underground reservoir of water that will infiltrate if the soil conditions permit.
- Mixed 2 parts construction sand to one part native soil above the underdrain.
 - This creates a man-made sandy loam conducive to infiltration.

First Facilities

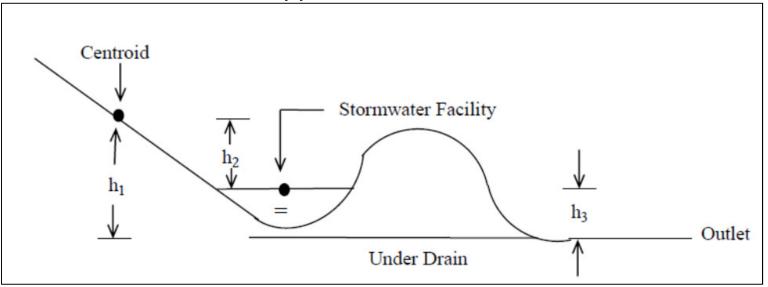
West Middle School (Dave Herring)

West Middle School


Friendly's Retrofit



Current Design 2016

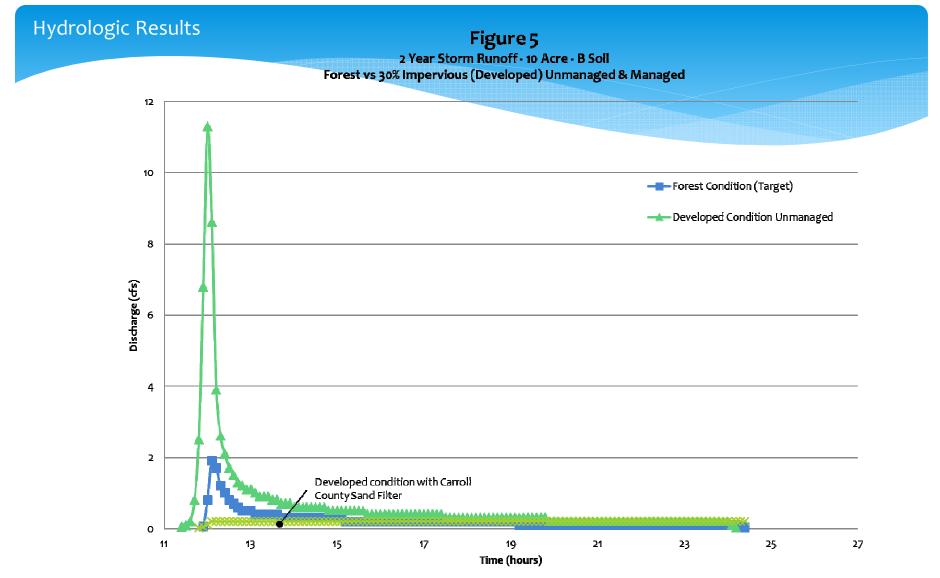

Unique Characteristics:

- No Riser- all design flows through sand control
- 2. Drop Structures and Level Pipes – No riprap inflows and Forebays in facility
- 3. Total Capture of 2 year storm, difference in 10 year runoff volume
- 4. Sand layer across entire bottom of facility
- 5. No limit on drainage area size
- 6. Q₁₀ captured and conveyed to pond

Application of Bernoulli's

Hydrologic Results

Bankful "Channel Shaping" Flow


(Wolman & Leopold, 1957)

- 1.07 to 2.7 years (agricultural watersheds)
- (USGS, 554) reduced to 0.7 years with 20% impervious

Carrolltowne 2A

2.5" Volume Sand FilterCompleted: 2013Drainage Ares: 88 AcresImpervious: 34 Acres (~39%)

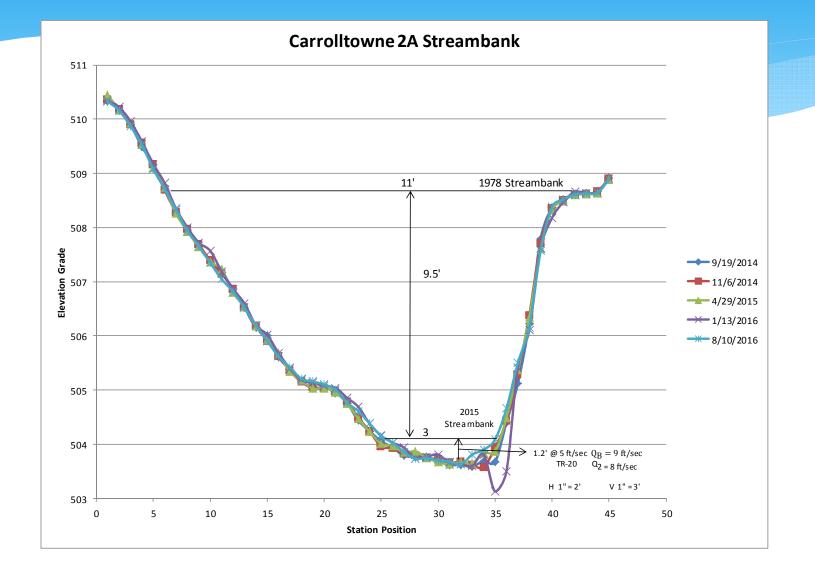
Extreme Extended Detention

- Thermal Impacts?
- See 5.6.5 "Additional Techniques for Mitigating Thermal Impacts"
- "Use the enhanced filter option"

Downstream Impacts Seeing is Believing

Carrolltowne 2A Before

Carrolltowne 2A After



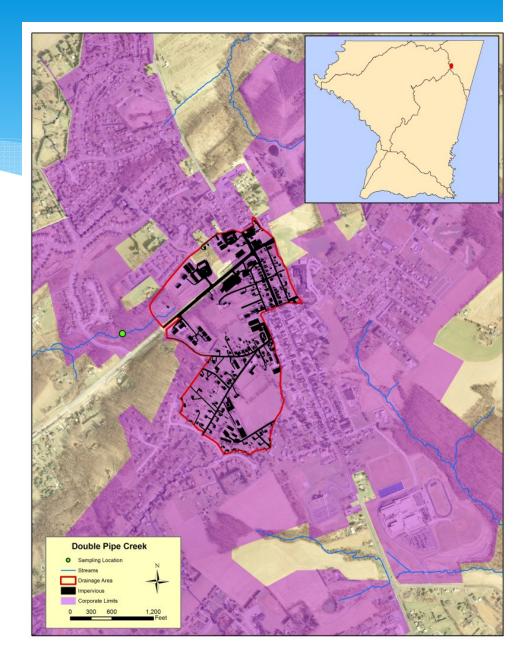
2014

2016

Carrolltowne 2A

If the Width is larger than necessary for quasiequilibrium, the unused parts of the wide channel are taken over by vegetation which not only tends to stabilize the places where the roots are present, but the vegetation itself induces deposition. The establishment of vegetation in unused parts of a natural channel provides a slow but effective way of reducing a width which has been made excessive during high flows.

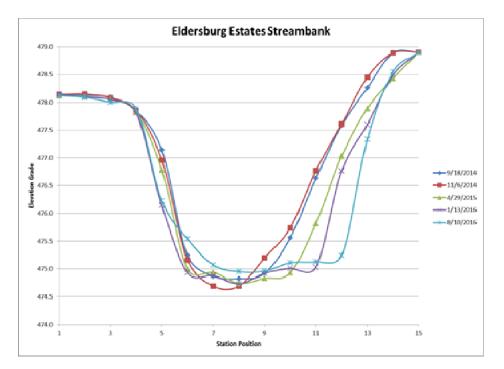
Wolman & Leopold, 1957



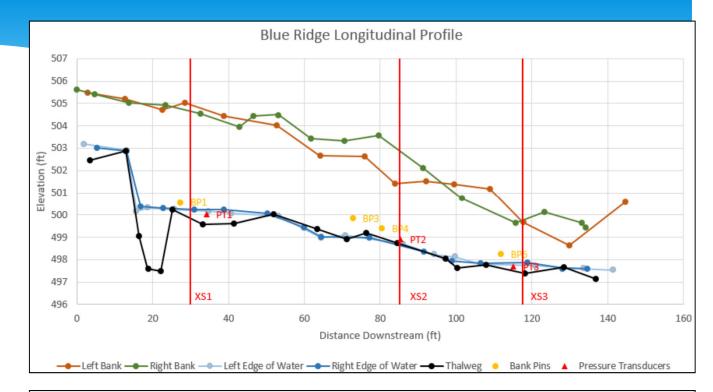
Retrofit Monitoring

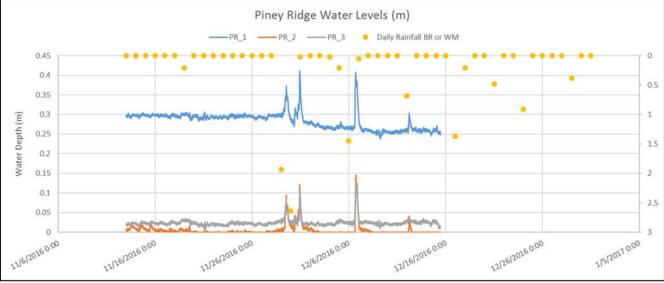
Data Collection:

- Low flow discharge w/ grab
- Targeted storm events
- Stage height analysis
- TSS, OP, NO₃₂, TP, TKN
- Spring MBSS



Stream Channel Stability




- Cross Section Surveys
- Bank Pins
- Stage Height Analysis

Physical Monitoring

- Geomorphic Mapping
- Cross Section Surveys
- Bank Pins
- Stage Height Analysis
- Longitudinal Profiles
- Bulk Density
- Riparian Analysis

Restoration Research Grant

Monitoring Plan Hypotheses:

Hypothesis 1

The implementation of BMPs as retrofits will modify the runoff response from the watershed (hydrograph) resulting in a reduction of the magnitude, duration and frequency of erosive flow rates that meet and or exceed Maryland Department of Environment (MDE) performance standards for stream channel protection.

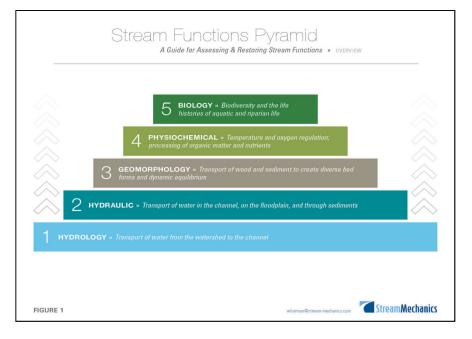
Hypothesis 2

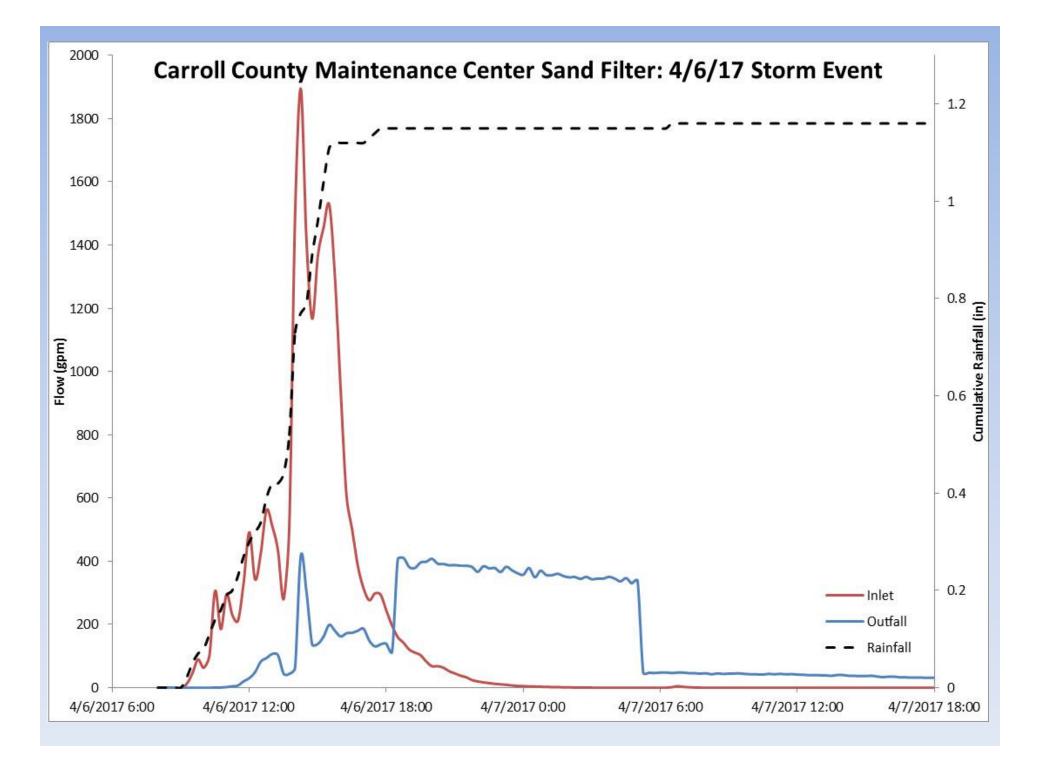
The implementation of BMPs as retrofits will create hydraulic conditions that lead to self-recovery of channel stability.

Hypothesis 3

The implementation of BMPs will decrease sediment loadings downstream as a result of reduced bank erosion rates.

Carrolltowne 2A


2.5" Volume Sand Filter
Completed: 2013
Drainage Ares: 88 Acres
Impervious: 34 Acres (~39%)


Spring MBSS

2011: 2.67 - Poor IBI 2014: 3.33 - Fair IBI 2017: Sampled March, 30th

Accounting for Stormwater Wasteload Allocations & Impervious Area Treated (2014)

2.5" Volume Sand Filter Carrolltowne 2A

38 Years

•	Impervious Area to Pond	34.4 acres
•	2014 Runoff Reduction "Bonus"	6 acres
•	Length of Hydrologically Restored Downstream Channel	1,100 feet
•	Stream Restoration Credit MDE 2011	11 acres
•	Prevented Streambank Erosion Credit	52 acres

Westminster High School Pond Retrofit

Information DA - 115 acres IA - 42 acres Volume to Spillway 3.4"/IA

	ST Practice	RR Practice		
TN	601 lbs/year	781 tons/year		
ТР	67 lbs/year	80 tons/year		
TSS	20 tons/year	21.5 tons/year		

Constructed in 2013 Cost \$1,100,00 \$26,000/IA

Westminster High School – Receiving Stream May, 2017

Downstream

Upstream

Questions?

Martin B. Covington, III, PE, CFM, D.WRE Carroll County Program Engineer/Stormwater Management 410-386-2205 <u>mcovington@ccg.carr.org</u>

Byron Madigan Water Resources Supervisor 410-386-2167 <u>bmadigan@ccg.carr.org</u>

http://ccgovernment.carr.org/ccg/resmgmt/doc/Forms/swm. supplement.pdf?x=1464697527476