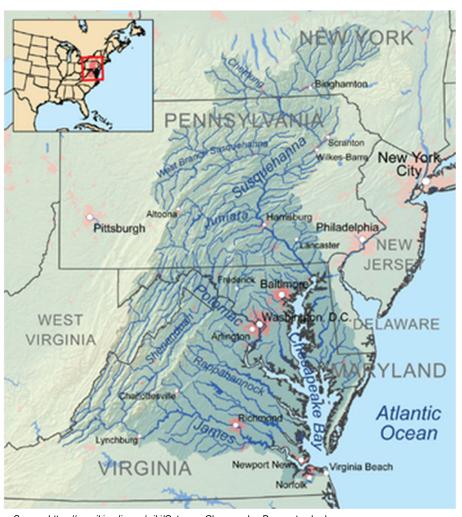
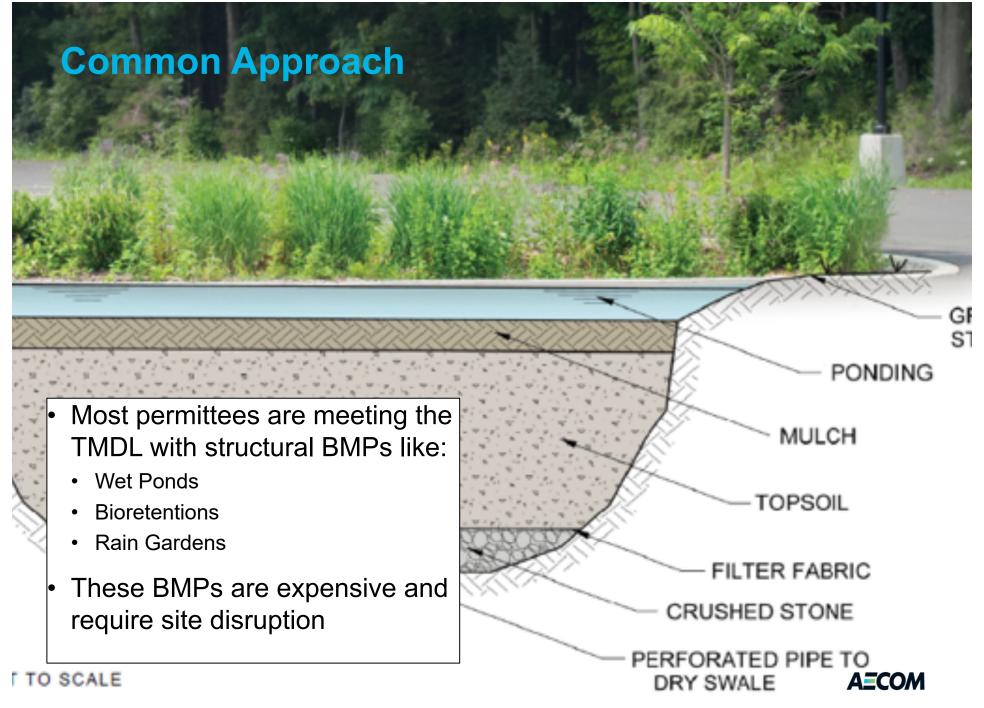
Non-Traditional Options – Getting to 2025... Pond Retrofits and BMPs Aren't the Only Answer


2019 CWEA Conference

Mary Roman, PE, CFM Claire Weinrib, EIT


Chesapeake Bay TMDL

- Developed by the EPA in 2010
 - Limits on TN, TP, and TSS entering the Bay and its tidal rivers
- 2025 deadline for implementing control measures to restore the Bay
- States/DC developed WIPs detailing strategies to meet TMDL

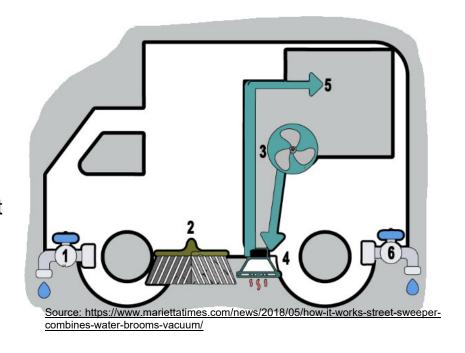
Source: https://en.wikipedia.org/wiki/Category:Chesapeake Bay watershed

Stream Restoration and Shoreline Management

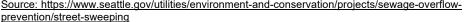
- Shoreline Management 0.04 IA credits per 1,000 LF
- Stream Restoration Credit given has recently increased by 100% and 200%, depending on the project region (coastal vs. non-coastal)
 - MDE Stream Restoration Crediting Clarification for MS4 Permitting Purposes (Memorandum)

Looking for an approach that doesn't involve a CIP project?

Options to consider...


- Street Sweeping
- Disconnection of Non-Rooftop runoff
- Grass Swales
- Other Alternative BMPs (requiring low-moderate construction)

Street Sweeping Methods


- Regenerative Air Sweepers (RAS)
 - Most effective method
 - Penetrates potholes and cracks
 - Removes dust from air before discharging it
 - Best at collecting fine materials
- Vacuum Air Sweepers (VAS)
 - Good at collecting fine materials
 - Can emit dust into air
 - Not suited for roadways with cracks and potholes
- Mechanical Broom Sweepers (MBS)
 - Least effective method
 - Not suited for roadways with cracks and potholes
 - Good at collecting coarse materials only

Approach

- Program must conduct street sweeping at least biweekly
- Weight of sweeper material collected must be measured
- Removal efficiency depends on the type of sweeper vehicle used
 - RAS or VAS are better than MBS because they remove fine sediment,
 though the mass loading approach would not account for this difference

Street Lane VS. Mass Loading Approach

- Mass Loading street debris collected is measured in tons and converted into pounds of TN, TP, and TSS removal.
- Street Lane number of lane miles swept during the entire year is reported and converted into pounds of TN, TP, and TSS removal.
 - o MBS receives a lower pollutant removal efficiency than RAS or VAS
 - Difference in efficiency between MBS and RAS/VAS is especially apparent for TSS (10% vs. 25%)

2014 MDE Guidance vs 2016 Expert Panel Guidance

- MDE is the governing body for Maryland NPDES permittees, but the expert panel uses more advanced techniques to determine credit.
- Until MDE adopts the expert panel method, it is safer to use the MDE method. However, the expert panel method can be used to plan for future compliance.

Street Sweeping

MDE:

Mass loading OR; Street lane approach

Expert Panel:

Mass loading preferred OR; Street lane approach using different nutrient loads per acre

Catch Basin Cleaning

MDE:

Mass loading

Expert Panel:

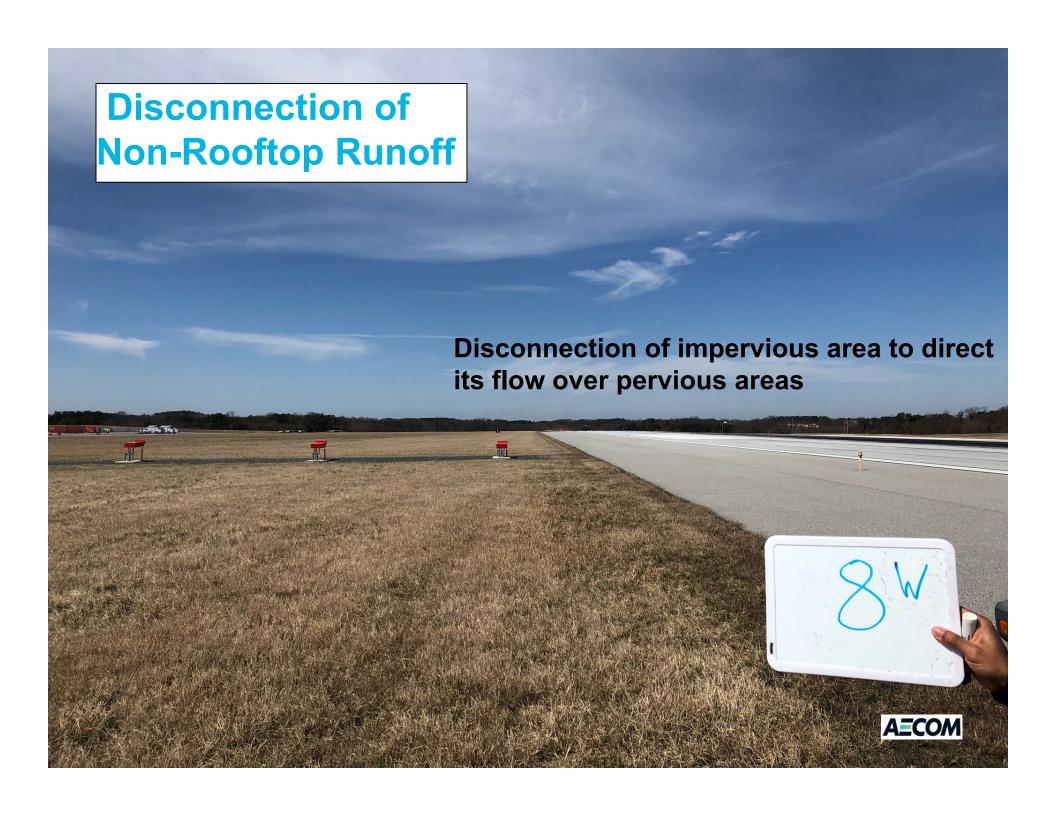
Updated Mass loading that differentiates between wet sediment (0.7*mass) and wet organic matter (0.2*mass) when calculating dry mass. Also uses different nutrient factors.

More Expert Panel Recommendations for Street Cleaning Practices (SCP)

- Maintain records, including parking conditions/controls
- Periodic nutrient sampling of sweeper wastes
- Develop verification program to document efforts and monitor collection characteristics

Pollutant Reductions Associated with Different Street Cleaning Practices					
Practice	Description 1	Approx	TSS Removal	TN Removal	TP Removal
#		Passes/Yr ²	(%)	(%)	(%)
SCP-1	AST- 2 PW	~100	21	4	10
SCP-2	AST- 1 PW	~50	16	3	8
SCP-3	AST- 1 P2W	~25	11	2	5
SCP-4	AST- 1 P4W	~10	6	1	3
SCP-5	AST- 1 P8W	~6	4	0.7	2
SCP-6	AST- 1 P12W	~4	2	0	1
SCP-7	AST- S1 or S2	~15	7	1	4
SCP-8	AST-S3 or S4	~20	· 10	2	5
SCP-9	MBT- 2PW	~100	0.7	0	0
SCP-10	MBT- 1 PW	~50	0.5	0	0
SCP-11	MBT- 1 P4W	~10	0.1	0	0

AST: Advanced Sweeping Technology MBT: Mechanical Broom Technology



¹ See Table 15 for the codes used to define street cleaning frequency

² Depending on the length of the winter shutdown, the number of passes/yr may be 10 to 15% lower than shown

Success Stories.....

- MAA has received 89.8 impervious acre credits for street sweeping
- MDTA has received 254.3 impervious acre credits for street sweeping

Desktop Analysis

Parameters -

- No hotspot runoff
- Impervious flow path between 10 and 75 feet
- Disconnection flow path greater than or equal to contributing imperious flow path
- Slope <= 5%
- 1-2 ft wide gravel transition strip between impervious flow area and pervious disconnection

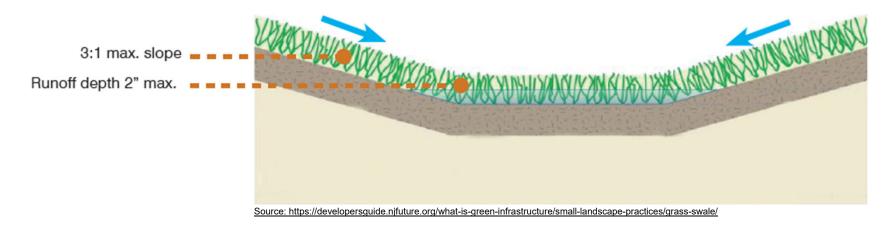
Table 5.7. ESD Sizing Factors for Non-Rooftop Disconnection

Ratio of Disconnection Length to Contributing Length					
Impervious Ratio	0.2:1	0.4:1	0.6:1	0.8:1	1:1
Pervious Ratio	0.1:1	0.2:1	0.3:1	0.4:1	0.5:1
$P_{\rm E}$ (in.) =	0.2	0.4	0.6	0.8	1.0

Table 3. Impervious Acre Credit for Treatment Above and Below 1 Inch of Rainfall				
Rainfall Depth Treated	Impervious Acre Credit per	Impervious Acre Credit per		
(inches)	Acre of Watershed	50 Acres of Watershed		
	Impervious Area	Impervious Area		
0.5	0.5	25		
0.75	0.75	37.5		
1.0	1	50		
1.4	1.1	55		
1.8	1.2	60		
2.2	1.3	65		
2.6	1.4	70		

Success Story...

 MAA has obtained over 90 imperious acres of credit for NDNRs



Desktop Analysis

Parameters: (MDE Stormwater Design Manual, Chapter 5 guidance)

- Swale bottom area at least 2% of overall DA to swale
- Side slopes 3H:1V or flatter
- Equivalent flat bottom width between 2 and 8 feet
- Channel slope 4% or less
- No hotspot runoff
- Best for soils of HSG A, B, or C

Grassed swales are an "RR" practice

Table 2.E. Removal Rates for ESD/RR and ST Practices						
Runoff	TSS		TP		TN	
Depth						
Treated						
(inches)	ESD/RR	ST	ESD/RR	ST	ESD/RR	ST
0.00	0%	0%	0%	0%	0%	0%
0.25	40%	37%	38%	29%	32%	19%
0.50	56%	52%	52%	41%	44%	26%
0.75	64%	60%	60%	47%	52%	30%
1.00	70%	66%	66%	52%	57%	33%
1.25	76%	71%	70%	55%	60%	35%
1.50	80%	74%	74%	58%	64%	37%
1.75	83%	77%	77%	61%	66%	39%
2.00	86%	80%	80%	63%	69%	40%
2.25	88%	83%	82%	65%	71%	41%
2.50	90%	85%	85%	66%	72%	42%

Note: Where runoff reduction or ESD I ESD/RR curves should be used.

Table 3. Impervious Acre Credit for Treatment Above and Below 1 Inch of Rainfall				
Rainfall Depth Treated	Impervious Acre Credit per	Impervious Acre Credit per		
(inches)	Acre of Watershed	50 Acres of Watershed		
	Impervious Area	Impervious Area		
0.5	0.5	25		
0.75	0.75	37.5		
1.0	1	50		
1.4	1.1	55		
1.8	1.2	60		
2.2	1.3	65		
2.6	1.4	70		

Other related "alternative" approaches to meet Ches Bay TMDL requirements

Recap

- Standard options for meeting the Chesapeake Bay TMDL can be costly and come with barriers to implementation.
- Communities can avoid high costs of implementation by using methods that do not require construction or new land area.
- BMPs like NDNRs, street sweeping, and grass swales are viable options for meeting regulatory requirements.

