

December 11, 2019

Millbrook, Submerged Gravel Wetland

The Clean Water Partnership

 A 30-year partnership between Prince George's County, Maryland and Corvias to identify, design, build, finance, operate and maintain stormwater assets.

- Based on the Community-Based Public Private Partnership (CBP3) model as developed by the USEPA Region III.
- Intentionally developed to provide multiple, overlying benefits (socioeconomic, environmental, implementation efficiency, local uplift, compliance surety)

Partnership Goals

<u>Scalable</u>

Implementation strategy for distributed stormwater infrastructure across public and private properties

Affordable

Implementation strategy to achieve County's cost of compliance

Maintainable

Long term compliance and operability of distributed stormwater infrastructure

Community Benefit and Uplift

Incorporation of broader policy performance objectives inclusive of investment in local, small and disadvantaged businesses, community outreach and public engagement

Integrated Delivery Partner

 HDR is responsible for the management of design, procurement, and construction toward the completion of projects with a view towards impervious acre credits in support of the County MS4 Permit and TMDL requirements

Agenda

- **1.Program Introduction**
- 2.Performance Summary
- 3. Phase 1: Breakdown by Class
- 4. Phase 1: Device Performance Breakdown

5.Next Steps

PROGRAM INTRODUCTION

ALCHORNE BUILD

Cas raine in air air

Stormwater Committee Seminar | December 11, 2019

Accokeek Library, Wet Pond

The Chesapeake Bay Program

Goal: Restore water quality to meet recreation and aquatic uses

- Started with 1983 Chesapeake Bay Agreement
- TMDL established in 2010, to be met by 2025
- Chesapeake Bay characteristics
 - 6 states and the District of Columbia
 - 64,000-square-mile watershed
 - 18.2 million residents

TMDL Requirements for Prince George's County MS4

™ M

Ĺ,

Clean Water Partnership CBP3 Goals

TMDL Strategy

- Capital improvement projects
- Alternative BMPs
- Urban stormwater retrofit programs

Schools 4

Stream restoration

Faith-based and other †**†**† private nonprofit community land

Municipal and county **AA**A sites

1 Existing pond retrofits

Scotchtown Elementary School, Swales

General Overview of Retrofit Program

PERFORMANCE SUMMARY

C. Vale

Accokeek Library, Wet Pond

Key Achievements in Phase 1

Nutrient Removal:

- 。 Total Nitrogen (TN): 34,000 lb
- Total Phosphorous (TP): 3,500 lb
- Total Suspended Solids (TSS): 1,990,000 lb

Total Projects Completed: 96

Total Devices Constructed: 246

Total Impervious Area Treated Credits (IATs):

• 2,142 acre credit

Drainage Area Treated:

- Total: 7,442 acres
- Impervious: 2,147 acres

Total Design and Construction Cost: \$63.4 million

St. Michael's Truth, Micro-Bioretention

Stormwater Committee Seminar | December 11, 2019

PHASE 1: BREAKDOW BY PROJECT CLASS

Stormwater Committee Seminar | December

Gwynn Park High School, Sand Filter

1

Data Breakdown - Class

 ACP 83 devices, \$24,000/device 59.7 lb TN removed, \$34,000/lb TN removed 5.51 IAT credits, \$369,000/IAT credit 	 MUN 66 devices, \$165,000/device 1,960.2 lb TN removed, \$6,000/lb TN removed 138.1 IAT credits, \$79,000/IAT credit
 School 65 devices, \$129,000/device 376.2 lb TN removed, \$22,000/lb TN removed 31.39 IAT credits, \$266,000/IAT credit 	 Ponds 27 devices, \$1,560,000/device 31,751 lb TN removed, \$1,000/lb TN removed 1,965 IAT credits, \$21,000/IAT credit

Costs do not include program management

PHASE 1: DEVICE PERFORMANCE BREAKDOWN

Potomac High School, Micro-Bioretention

16

BMP Types

Nine (9) BMP types were built in the program

Examples of Micro-Scale Practice:

- Micro-Bio Retention (MMBR)
- Rooftop Disconnection (NDNR)
- Impervious Area to Pervious (IMPP)

Examples of Small-Scale Practice:

- Bioretention Filter (FBIO)
- Sand/Organic Filter (FSND)
- Regenerative Step Pool Storm Conveyance (SPSC)
- Grass Swale (MSWG)

Rhode Island Ave, Step Pool

Wet Ponds (PWET) can be implemented on a large or small scale, depending on site conditions.

Phase 1 Data Breakdown – Micro to Small Scale

ВМР Туре	Number of Devices built	TN Removed (lb/yr)	TP Removed (lb/yr)	TSS Removed (Ib/yr)	Impervious Area Credits (IATs) Received	Total Design & Construction Spent*	\$\$/IAT	\$\$/Device	\$\$/TN Removed	\$\$/TP Removed	\$\$/TSS Removed
Micro-Bio Retention (MMBR)	49	155.70	16.82	9,007	13.1	\$4,612,049	\$353,000	\$94,000	\$30,000	\$274,000	\$512
Sand Filter (FSND)	18	313.09	35.83	21,232	28.1	\$5,568,014	\$198,000	\$309,000	\$18,000	\$155,000	\$262
Bio-Retention (FBIO)	6	81.27	7.91	4,131	6.12	\$1,775,002	\$290,000	\$296,000	\$22,000	\$225,000	\$430
Rooftop Runoff Disconnect (NDRR+NDNR)	100	11.47	1.47	813	1.50	\$616,943	\$412,000	\$6,000	\$54,000	\$420,000	\$759
Impervious Area to Pervious (IMPP)	17	5.81	1.49	873	0.97	\$468,503	\$483,000	\$28,000	\$81,000	\$315,000	\$537
Grass Swales (MSWB)	6	52.39	5.21	2,802	3.61	\$660,389	\$183,000	\$110,000	\$13,000	\$127,000	\$236
Infiltration Trench (ITRN)	1	1.49	0.18	101	0.16	\$75,396	\$471,000	\$75,000	\$51,000	\$417,000	\$746
Step Pool Storm Conveyance (SPSC)	1	42.12	5.39	2,975	0.91	\$40,297	\$44,000	\$40,000	\$1,000	\$7,000	\$14
Outfall Stabilization	1	N/A	N/A	N/A	0.94	\$40,297	\$43,000	\$40,000	N/A	N/A	N/A

Costs do not include program management

18

Nutrient Reduction: TN – Micro to Small Scale

Nutrient Reduction: TP – Micro to Small Scale

Cost vs. Phosphorus Reduction

Construction Cost

Nutrient Reduction: TSS – Micro to Small Scale

IAT Credits – Micro to Small Scale

BMP Type Performance Breakdown

MMBR

- 49 devices, \$94,000/device
- 155.7 lb TN removed, \$30,000/lb TN removed
- 13.1 IAT credits, \$353,000/IAT credit

FSND

- 18 devices, \$309,000/device
- 313.1 lb TN removed, \$18,000/lb TN removed
- 28.1 IAT credits, \$198,000/IAT credit

FBIO

- 6 devices, \$296,000/device
- 81.27 lb TN removed, \$22,000/lb TN removed
- 6.12 IAT credits, \$290,000/IAT credit

Costs do not include project management

NDNR

- 100 devices, \$6,000/device
- 54,000 lb TN removed, \$1,000/lb TN removed
- 1.50 IAT credits, \$412,000/IAT credit

Nitrogen Reduction - Ponds

Small Ponds (zoomed in)

Construction Cost

Stormwater Committee Seminar | December 11, 2019

Data Breakdown - Ponds

- Smaller ponds: Nutrient reduction highly correlated with construction cost, lower cost per device, higher per pound nutrient reduction.
 - $_{\circ}~$ 8 devices, \$501,000/device
 - 485 lb TN removed, \$8,000/lb TN removed
 - $_{\circ}~$ 37.5 IAT credits, \$107,000/IAT credit

- Large ponds: Site specific, was able to perform minimal retrofit at large ponds to maximize return, outliers make statistic correlation very weak.
 - 34 devices, \$1,329,000/device
 - 33,049 lb TN removed, \$1,000/lb TN removed
 - 2,054 IAT credits, \$22,000/IAT credit
 - $_{\circ}$ Should see more correlation in Phase 2

Costs do not include project management

Comparison of Projects – One Device vs. Multiple Devices

Overall projects with multiple devices see lower cost per lb of nutrients removed

• Projects with multiple devices are approximately 2/3 of unit cost of projects with 1 device because of shared mobilization/demobilization and other construction costs

NEXT STEPS

Phase 2 Underway

90+ Projects

Performance-based Design Contracts

Collaboration with General Contractors

Three years until June 2021

Stormwater Committee Seminar | December 11, 2019

28

Questions or Comments?

Stormwater Committee Seminar | December 11, 2019

For Additional Information about the Clean Water Partnership

Visit the website at <u>https://thecleanwaterpartnership.com</u>

30

