Stormwater BMP Performance in Meeting Chesapeake Bay TMDL Goals in Prince George’s County MD

December 11, 2019

Millbrook, Submerged Gravel Wetland
The Clean Water Partnership

• A 30-year partnership between Prince George’s County, Maryland and Corvias to identify, design, build, finance, operate and maintain stormwater assets.

• Based on the Community-Based Public Private Partnership (CBP3) model as developed by the USEPA Region III.

• Intentionally developed to provide multiple, overlying benefits (socioeconomic, environmental, implementation efficiency, local uplift, compliance surety)
Partnership Goals

Scalable
Implementation strategy for distributed stormwater infrastructure across public and private properties

Affordable
Implementation strategy to achieve County’s cost of compliance

Maintainable
Long term compliance and operability of distributed stormwater infrastructure

Community Benefit and Uplift
Incorporation of broader policy performance objectives inclusive of investment in local, small and disadvantaged businesses, community outreach and public engagement
Integrated Delivery Partner

• HDR is responsible for the management of design, procurement, and construction toward the completion of projects with a view towards impervious acre credits in support of the County MS4 Permit and TMDL requirements
Agenda

1. Program Introduction
2. Performance Summary
3. Phase 1: Breakdown by Class
4. Phase 1: Device Performance Breakdown
5. Next Steps
PROGRAM INTRODUCTION
The Chesapeake Bay Program

Goal:
Restore water quality to meet recreation and aquatic uses

- Started with 1983 Chesapeake Bay Agreement
- TMDL established in 2010, to be met by 2025
- Chesapeake Bay characteristics
 - 6 states and the District of Columbia
 - 64,000-square-mile watershed
 - 18.2 million residents
TMDL Requirements for Prince George’s County MS4

Just under 500 square miles

CB TMDL target = 15,000 acres of impervious area treated by 2025

Stormwater enters Chesapeake Bay through Anacostia and Patuxent Rivers

2017 population was about 920,000
Clean Water Partnership CBP3 Goals

<table>
<thead>
<tr>
<th>Goal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrofit 4,000 impervious acres</td>
<td>Design, build, operate, and maintain</td>
</tr>
<tr>
<td>Design, build, operate, and maintain</td>
<td>Third-party inspection and certification</td>
</tr>
<tr>
<td>Third-party inspection and certification</td>
<td>30 year full lifecycle partnership</td>
</tr>
<tr>
<td>Outreach to community and property stakeholders</td>
<td>Commitment to using local, small, and minority-owned businesses to perform 30–40% of work</td>
</tr>
<tr>
<td>Community and social economic development through alternative compliance with nonprofit groups, mentor protégé program, and workforce development</td>
<td></td>
</tr>
</tbody>
</table>
TMDL Strategy

- Capital improvement projects
- Alternative BMPs
- Urban stormwater retrofit programs

Schools

Stream restoration

Faith-based and other private nonprofit community land

Existing pond retrofits

Municipal and county sites

Scotchtown Elementary School, Swales
General Overview of Retrofit Program

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site selection</td>
<td></td>
</tr>
<tr>
<td>Project design and permitting</td>
<td></td>
</tr>
<tr>
<td>Construction procurement</td>
<td></td>
</tr>
<tr>
<td>Target class</td>
<td></td>
</tr>
<tr>
<td>Construction management</td>
<td></td>
</tr>
<tr>
<td>Outreach and compliance</td>
<td></td>
</tr>
<tr>
<td>Project closeout and certification</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
</tbody>
</table>

Largo Kettering Library, Micro-Bio
PERFORMANCE SUMMARY
Key Achievements in Phase 1

Nutrient Removal:
- Total Nitrogen (TN): 34,000 lb
- Total Phosphorous (TP): 3,500 lb
- Total Suspended Solids (TSS): 1,990,000 lb

Total Projects Completed: 96
Total Devices Constructed: 246

Total Design and Construction Cost: $63.4 million

Total Impervious Area Treated
Credits (IATs):
- 2,142 acre credit

Drainage Area Treated:
- Total: 7,442 acres
- Impervious: 2,147 acres

St. Michael's Truth, Micro-Bioretention
PHASE 1: BREAKDOWN BY PROJECT CLASS
Data Breakdown - Class

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
<th>Cost per Item</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>83 devices, $24,000/device</td>
<td>$34,000/lb TN removed</td>
<td>59.7 lb TN removed</td>
</tr>
<tr>
<td>MUN</td>
<td>66 devices, $165,000/device</td>
<td>$6,000/lb TN removed</td>
<td>1,960.2 lb TN removed</td>
</tr>
<tr>
<td>School</td>
<td>65 devices, $129,000/device</td>
<td>$22,000/lb TN removed</td>
<td>376.2 lb TN removed</td>
</tr>
<tr>
<td>Ponds</td>
<td>27 devices, $1,560,000/device</td>
<td>$1,000/lb TN removed</td>
<td>31,751 lb TN removed</td>
</tr>
</tbody>
</table>

Costs do not include program management
PHASE 1: DEVICE PERFORMANCE BREAKDOWN
BMP Types

Nine (9) BMP types were built in the program

Examples of Micro-Scale Practice:
- Micro-Bio Retention (MMBR)
- Rooftop Disconnection (NDNR)
- Impervious Area to Pervious (IMPP)

Examples of Small-Scale Practice:
- Bioretention Filter (FBIO)
- Sand/Organic Filter (FSND)
- Regenerative Step Pool Storm Conveyance (SPSC)
- Grass Swale (MSWG)

Wet Ponds (PWET) can be implemented on a large or small scale, depending on site conditions.
Phase 1 Data Breakdown – Micro to Small Scale

<table>
<thead>
<tr>
<th>BMP Type</th>
<th>Number of Devices built</th>
<th>TN Removed (lb/yr)</th>
<th>TP Removed (lb/yr)</th>
<th>TSS Removed (lb/yr)</th>
<th>Impervious Area Credits (IATs) Received</th>
<th>Total Design & Construction Spent*</th>
<th>$$/IAT</th>
<th>$$/Device</th>
<th>$$/TN Removed</th>
<th>$$/TP Removed</th>
<th>$$/TSS Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-Bio Retention (MMBR)</td>
<td>49</td>
<td>155.70</td>
<td>16.82</td>
<td>9,007</td>
<td>13.1</td>
<td>$4,612,049</td>
<td>$353,000</td>
<td>$94,000</td>
<td>$30,000</td>
<td>$274,000</td>
<td>$512</td>
</tr>
<tr>
<td>Sand Filter (FSND)</td>
<td>18</td>
<td>313.09</td>
<td>35.83</td>
<td>21,232</td>
<td>28.1</td>
<td>$5,568,014</td>
<td>$198,000</td>
<td>$309,000</td>
<td>$18,000</td>
<td>$155,000</td>
<td>$262</td>
</tr>
<tr>
<td>Bio-Retention (FBIO)</td>
<td>6</td>
<td>81.27</td>
<td>7.91</td>
<td>4,131</td>
<td>6.12</td>
<td>$1,775,002</td>
<td>$290,000</td>
<td>$296,000</td>
<td>$22,000</td>
<td>$225,000</td>
<td>$430</td>
</tr>
<tr>
<td>Rooftop Runoff Disconnect (NDRR+NDNR)</td>
<td>100</td>
<td>11.47</td>
<td>1.47</td>
<td>813</td>
<td>1.50</td>
<td>$616,943</td>
<td>$412,000</td>
<td>$6,000</td>
<td>$54,000</td>
<td>$420,000</td>
<td>$759</td>
</tr>
<tr>
<td>Impervious Area to Pervious (IMPP)</td>
<td>17</td>
<td>5.81</td>
<td>1.49</td>
<td>873</td>
<td>0.97</td>
<td>$468,503</td>
<td>$483,000</td>
<td>$28,000</td>
<td>$81,000</td>
<td>$315,000</td>
<td>$537</td>
</tr>
<tr>
<td>Grass Swales (MSWB)</td>
<td>6</td>
<td>52.39</td>
<td>5.21</td>
<td>2,802</td>
<td>3.61</td>
<td>$660,389</td>
<td>$183,000</td>
<td>$110,000</td>
<td>$13,000</td>
<td>$127,000</td>
<td>$236</td>
</tr>
<tr>
<td>Infiltration Trench (ITRN)</td>
<td>1</td>
<td>1.49</td>
<td>0.18</td>
<td>101</td>
<td>0.16</td>
<td>$75,396</td>
<td>$471,000</td>
<td>$75,000</td>
<td>$51,000</td>
<td>$417,000</td>
<td>$746</td>
</tr>
<tr>
<td>Step Pool Storm Conveyance (SPSC)</td>
<td>1</td>
<td>42.12</td>
<td>5.39</td>
<td>2,975</td>
<td>0.91</td>
<td>$40,297</td>
<td>$44,000</td>
<td>$40,000</td>
<td>$1,000</td>
<td>$7,000</td>
<td>$14</td>
</tr>
<tr>
<td>Outfall Stabilization</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>0.94</td>
<td>$40,297</td>
<td>$43,000</td>
<td>$40,000</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Costs do not include program management
Nutrient Reduction: TN – Micro to Small Scale

Cost vs Nitrogen Reduction

Construction Cost

$0 $200,000 $400,000 $600,000 $800,000

TN Reduced (lb/yr)

R² = 0.7477

$/lb TN removed

1-A-MMBR
2-A-FSND
3-A-FBIO
4-A-NDNR
5-A-IMPP
Linear (6-A-)

MMBR
FSND
FBIO
NDNR
IMPP
Nutrient Reduction: TP – Micro to Small Scale

Cost vs. Phosphorus Reduction

Construction Cost

TP Reduced (lb/yr)

$0 $100,000 $200,000 $300,000 $400,000 $500,000 $600,000 $700,000

$0 $50,000 $100,000 $150,000 $200,000 $250,000 $300,000 $350,000 $400,000 $450,000

$/lb TP removed

R² = 0.7809

Nutrient Reduction: TP – Micro to Small Scale

Stormwater Committee Seminar | December 11, 2019
Nutrient Reduction: TSS – Micro to Small Scale

Cost vs. TSS Reduction

Construction Cost

TSS Reduced (lb/yr)

$0 $200,000 $400,000 $600,000 $800,000

$0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Linear (6-A-)

R² = 0.7747

$/lb TSS removed

MMBR FSND FBIO NDNR IMPP

4-A-NDNR 5-A-IMPP
IAT Credits – Micro to Small Scale

Construction Cost

R² = 0.8116

Credits

$0 $100,000 $200,000 $300,000 $400,000 $500,000 $600,000 $700,000

$/lb TN removed

1-A-MMBR
2-A-FSND
3-A-FBIO
4-A-NDNR
5-A-IMPP

Linear (6-A-)

100,000
200,000
300,000
400,000
500,000
600,000

Stormwater Committee Seminar | December 11, 2019
BMP Type Performance Breakdown

<table>
<thead>
<tr>
<th>Type</th>
<th>Details</th>
<th>Cost per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMBR</td>
<td>49 devices, $94,000/device</td>
<td>$94,000/device</td>
</tr>
<tr>
<td></td>
<td>155.7 lb TN removed, $30,000/lb TN removed</td>
<td>$30,000/lb TN removed</td>
</tr>
<tr>
<td></td>
<td>13.1 IAT credits, $353,000/IAT credit</td>
<td>$353,000/IAT credit</td>
</tr>
<tr>
<td>FSND</td>
<td>18 devices, $309,000/device</td>
<td>$309,000/device</td>
</tr>
<tr>
<td></td>
<td>313.1 lb TN removed, $18,000/lb TN removed</td>
<td>$18,000/lb TN removed</td>
</tr>
<tr>
<td></td>
<td>28.1 IAT credits, $198,000/IAT credit</td>
<td>$198,000/IAT credit</td>
</tr>
<tr>
<td>FBIO</td>
<td>6 devices, $296,000/device</td>
<td>$296,000/device</td>
</tr>
<tr>
<td></td>
<td>81.27 lb TN removed, $22,000/lb TN removed</td>
<td>$22,000/lb TN removed</td>
</tr>
<tr>
<td></td>
<td>6.12 IAT credits, $290,000/IAT credit</td>
<td>$290,000/IAT credit</td>
</tr>
<tr>
<td>NDNR</td>
<td>100 devices, $6,000/device</td>
<td>$6,000/device</td>
</tr>
<tr>
<td></td>
<td>54,000 lb TN removed, $1,000/lb TN removed</td>
<td>$1,000/lb TN removed</td>
</tr>
<tr>
<td></td>
<td>1.50 IAT credits, $412,000/IAT credit</td>
<td>$412,000/IAT credit</td>
</tr>
</tbody>
</table>

Costs do not include project management
Nitrogen Reduction - Ponds

Small Ponds (zoomed in)

Construction Cost

Nitrogen Reduction (lb/year)

$0 $200,000 $400,000 $600,000 $800,000 $1,000,000 $1,200,000

PWET < 20 ac PWET >20 ac Linear (PWET < 20 ac)

R² = 0.9106
Smaller ponds: Nutrient reduction highly correlated with construction cost, lower cost per device, higher per pound nutrient reduction.
- 8 devices, $501,000/device
- 485 lb TN removed, $8,000/lb TN removed
- 37.5 IAT credits, $107,000/IAT credit

Large ponds: Site specific, was able to perform minimal retrofit at large ponds to maximize return, outliers make statistic correlation very weak.
- 34 devices, $1,329,000/device
- 33,049 lb TN removed, $1,000/lb TN removed
- 2,054 IAT credits, $22,000/IAT credit
- Should see more correlation in Phase 2

Costs do not include project management
Comparison of Projects – One Device vs. Multiple Devices

Overall projects with multiple devices see lower cost per lb of nutrients removed

- Projects with multiple devices are approximately 2/3 of unit cost of projects with 1 device because of shared mobilization/demobilization and other construction costs
NEXT STEPS
Phase 2 Underway

2,000 Acres

90+ Projects

Performance-based Design Contracts

Collaboration with General Contractors

Three years until June 2021
Questions or Comments?

Oxon Hill Library, Micro-Bioretention
For Additional Information about the Clean Water Partnership

Visit the website at https://thecleanwaterpartnership.com

CONNECT WITH CLEAN WATER PARTNERSHIP

@PGCCWP

@pgccleanwater

@PGCCWP

Look for our channel: The Clean Water Partnership